HKUST Dual Program 2019

Level 1 (Engineering – Robotics)

Basic Electronics, Energy and Power

Dr. Tim, Kam-tim WOO (eetim@ust.hk) and Fox WU (eefox@ust.hk)

Circuit theory in Mathematics

• Consider two typical circuits, Parallel and Series configuration

Circuit theory in Mathematics

Consider Series configuration

$$V = V_1 + V_2 = IR_1 + IR_2$$

 $IR_{eq} = I(R_1 + R_2)$
 $R_{eq} = (R_1 + R_2)$

Series

• The 2 middle $1k\Omega$ resistors are said to be in Series

Circuit theory in Mathematics

Parallel configuration

Parallel Configuration

$$V = V_1$$

= V_2
 $I = I_1 + I_2$
 $V_1 = I_1 R_1$
 $V_2 = I_2 R_2$

$$I = I_1 + I_2 = \frac{V_1}{R_1} + \frac{V_2}{R_2} = \frac{V}{R_1} + \frac{V}{R_2}$$

$$= \left(\frac{1}{R_1} + \frac{1}{R_2}\right)V$$

$$I = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)IR_{eq}$$

$$\frac{1}{R_{eq}} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Parallel

• The 2 middle $1k\Omega$ resistors are said to be in Parallel

A LITTLE MORE CHALLENGING EXAMPLE

❖ Consider the simple resistor network below. What's the power of the different values of R_L ?

R_L (k Ω)	I _L Current through R _L (mA)	V_L Voltage at R_L (mV)	P _L Power at R _L (mW)
0.6			
1.2			
1.8			
2.4			2.6
3.0			
3.6			
4.0			

Can you plot the graph Power at R_L vs R_L ?

How does the curve look like?