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Galilean invariance



We have introduced the concept of inertial 
reference frame



inertial frame
- Newton’s Law is valid in all reference 
frames that are not accelerating, or are not 
themselves act upon by forces (Galilean 
invariance).



Imagine you are travelling on a very big boat…

Maybe in this one…

This is a very big boat, and is very stable so that 
you do not feel any floating up-and-down motion of 
the boat.

The important of Galilean invariance can be 
seen from the following example:



Suppose you are living at the interior of the boat and 
have no window to look outside. 



One day, you wake up from a nap, and out of 
curiosity you want to find out whether the boat is…

Can you find that out without asking someone, and 
without going outside?

actually parking somewhere, or is traveling with a 
uniform speed. 



Expt.?



What Galilean invariance 
said is that you cannot 
determine whether you 
are moving (with 
uniform velocity) or not 
if you perform 
experiments involving 
Newton’s Law inside the 
boat, like looking at the 
trajectory of a little ball 
that you throw up, or 
looking at the motion of 
anything you see. 

?



Natural Question: How about if the boat is 
accelerating? Do you think you can detect 

that inside the room?

Yes, because inertial (pseudo) forces will be observed



Is there any fundamental reason why 
Newton’s Law cannot detect uniform 

motions? Is it possible that it is a 
fundamental nature of our universe that no 
matter what tools (physical phenomena) you 
use, you cannot tell whether something is 

moving with uniform velocity or at rest (with 
respect to our universe)?

This amazing fact is what inspires 
Einstein to ask the following question



He investigate the consequence if 
we cannot distinguish uniform 

motion from rest using any E&M 
(light) experiments.



The answer he obtained was revolutionary:

If we require that the physical laws of nature 
have the absolute property that they

cannot distinguish uniform motions 
from rest,

then distance and time must 
become relative.



The length of time between two 
events and the distance between 
two events that take place depends 
on the status of the observer. 

?



This is the essence of the
theory of special relativity



The relativeness of space and time has 
only very small effect when the relative 
speed between two objects is much less 

than speed of light.

Good!



Oh!

However, the effect becomes drastic 
when the (relative) speed of motion is 

close to speed of light. 



Electromagnetism and Special Relativity 



can you tell whether the train is moving with 
uniform velocity or at rest?

Throwing a ball in a train,

No you can’t.
(by Galileo relativity)



How about sending a light pulse?

Einstein’s answer: “ still you can’t tell”.



Einstein realized that if Maxwell equations 
appear the same in all inertial reference frames, 

than uniform motion could not be detected by 
experiments involving electricity and magnetism.

Hey Kit, do
you think we
are moving?

Don’t ask
Me. Ask
Einstein.



In particular, Einstein noticed that if Maxwell equation
is the same in all inertial reference frames, the speed
of light will be the same in all inertial reference
frames, independent of the motion of the object
sending and receiving the light signal!



For example, the speed of light (relative to you)
is the same independent of whether you are
moving along the same direction or opposite
direction of the light beam.

C
C again !

How come?



Before Einstein, some people believed that EM waves 
needs a medium, called Ether, to propagate.

Because EM waves can reach all places, it is believed 
that it filled up our universe.

The speed of light, c, is the velocity the EM wave 
travels relative to this fixed media .

c

Ether 
(say v=0)



To someone who is moving in Ether, the speed of light 
will be different.

After Einstein, most people believe that there is no 
Ether

EM waves can propagate in vacuum, and the speed of 
light is the same for all observers.



Time Dilation when speed of light is the same at all 
inertial reference frames



Let us consider the following simple experiment.

F D

A flashing light bulb F is attached to a detector D 
and separated by a distance Lo from a mirror M. A 
flash of light from the bulb is reflected back by 
the mirror, and is detected by D. The time interval 
between emission of detection is

M

according to an observer at rest 
with the device.

𝑡" =
2𝐿"
𝑐



Now let us examine the same experiment again from 
another observer who is travelling from right to left 
with velocity u. According to this observer, the whole 

device is moving from left to right with velocity u.
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Let us denote the time between the emission and 
detection of light be Dt for the second observer. The 
whole device has traveled a distance uDt and the total 
distance light has traveled is 2 2 2
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Time dilation and proper time

• Let Δ𝑡" be the proper time between two events (i.e. the two events 
occur at the same position).

• An observer moving with constant speed u will measure the time interval 
to be Δ𝑡, where

where the Lorentz factor 𝛾 is defined as:



The Lorentz factor

• When u is very small 
compared to 𝑐, 𝛾 is very 
nearly equal 
to 1. 

• If the relative speed u is 
great enough that 𝛾 is 
appreciably greater than 
1, the speed is said to 
be relativistic. 



Proper time

• Proper time is the time 
interval between two 
events that occur at the 
same point (at rest). 

• A frame of reference 
can be pictured as a 
coordinate system with 
a grid of synchronized 
clocks, as in the figure 
at the right.
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In thought experiments, it’s often helpful to imagine many observers with syn-
chronized clocks at rest at various points in a particular frame of reference. We
can picture a frame of reference as a coordinate grid with lots of synchronized
clocks distributed around it, as suggested by Fig. 37.9. Only when a clock is
moving relative to a given frame of reference do we have to watch for ambigui-
ties of synchronization or simultaneity.

Throughout this chapter we will frequently use phrases like “Stanley observes
that Mavis passes the point at time 2.00 s.” This
means that Stanley is using a grid of clocks in his frame of reference, like the grid
shown in Fig. 37.9, to record the time of an event. We could restate the phrase as
“When Mavis passes the point at the clock at that
location in Stanley’s frame of reference reads 2.00 s.” We will avoid using
phrases like “Stanley sees that Mavis is a certain point at a certain time,” because
there is a time delay for light to travel to Stanley’s eye from the position of an
event.

z = 0,y = 0,x = 5.00 m,

z = 0y = 0,x = 5.00 m,

x

S

y

The grid is three dimensional; identical planes
of clocks lie in front of and behind the page,
connected by grid lines perpendicular to the
page.

37.9 A frame of reference pictured as a
coordinate system with a grid of synchro-
nized clocks.

Problem-Solving Strategy 37.1 Time Dilation

IDENTIFY the relevant concepts: The concept of time dilation is
used whenever we compare the time intervals between events as
measured by observers in different inertial frames of reference.

SET UP the problem using the following steps:
1. First decide what two events define the beginning and the end

of the time interval. Then identify the two frames of reference
in which the time interval is measured.

2. Identify the target variable.

EXECUTE the solution as follows:
1. In many problems, the time interval as measured in one frame

of reference is the proper time This is the time interval¢t0.

between two events in a frame of reference in which the two
events occur at the same point in space. In a second frame of
reference that has a speed relative to that first frame, there is a
longer time interval between the same two events. In this
second frame the two events occur at different points. You will
need to decide in which frame the time interval is and in
which frame it is 

2. Use Eq. (37.6) or (37.8) to relate and and then solve for
the target variable.

EVALUATE your answer: Note that is never smaller than 
and is never greater than If your results suggest otherwise, you
need to rethink your calculation.

c.u
¢t0,¢t

¢t,¢t0

¢t.
¢t0

¢t
u

Example 37.1 Time dilation at 0.990c

High-energy subatomic particles coming from space interact with
atoms in the earth’s upper atmosphere, in some cases producing
unstable particles called muons. A muon decays into other particles
with a mean lifetime of as measured in a
reference frame in which it is at rest. If a muon is moving at 0.990
relative to the earth, what will an observer on earth measure its
mean lifetime to be?

SOLUTION

IDENTIFY and SET UP: The muon’s lifetime is the time interval
between two events: the production of the muon and its subsequent
decay. Our target variable is the lifetime in your frame of reference
on earth, which we call frame S. We are given the lifetime in a
frame in which the muon is at rest; this is its proper lifetime,

The relative speed of these two frames is2.20 ms .¢t0 =
S¿

c
2.20 ms = 2.20 * 10-6 s

c. We use Eq. (37.6) to relate the lifetimes in the two
frames.

EXECUTE: The muon moves relative to the earth between the two
events, so the two events occur at different positions as measured
in S and the time interval in that frame is (the target variable).
From Eq. (37.6),

EVALUATE: Our result predicts that the mean lifetime of the muon
in the earth frame is about seven times longer than in the
muon’s frame This prediction has been verified experimen-
tally; indeed, this was the first experimental confirmation of the
time dilation formula, Eq. (37.6).

1¢t02.1¢t2
¢t =

¢t021 - u2>c2
=

2.20 ms21 - 10.99022 = 15.6 ms

¢t

u = 0.990
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Example 37.2 Time dilation at airliner speeds

An airplane flies from San Francisco to New York (about 4800 km,
or ) at a steady speed of (about 
How much time does the trip take, as measured by an observer on
the ground? By an observer in the plane?

SOLUTION

IDENTIFY and SET UP: Here we’re interested in the time interval
between the airplane departing from San Francisco and landing in
New York. The target variables are the time intervals as measured
in the frame of reference of the ground and in the frame of refer-
ence of the airplane 

EXECUTE: As measured in S the two events occur at different posi-
tions (San Francisco and New York), so the time interval measured
by ground observers corresponds to in Eq. (37.6). To find it, we
simply divide the distance by the speed s:

In the airplane’s frame San Francisco and New York passing
under the plane occur at the same point (the position of the plane).
Hence the time interval in the airplane is a proper time, correspon-
ding to in Eq. (37.6). We have¢t0

S¿,

¢t = 4.80 * 106 m
300 m>s = 1.60 * 104 s 1about 4 1

2 hours2u = 300 m>¢t

S¿.
S

670 mi>h).300 m>s4.80 * 106 m

From Eq. (37.6),

The square root can’t be evaluated with adequate precision with an
ordinary calculator. But we can approximate it using the binomial
theorem (see Appendix B):

The remaining terms are of the order of or smaller and can
be discarded. The approximate result for is

The proper time measured in the airplane, is very slightly less
(by less than one part in ) than the time measured on the ground.

EVALUATE: We don’t notice such effects in everyday life. But
present-day atomic clocks (see Section 1.3) can attain a precision
of about one part in A cesium clock traveling a long distance
in an airliner has been used to measure this effect and thereby ver-
ify Eq. (37.6) even at speeds much less than c.

1013.

1012
¢t0,

¢t0 = 11.60 * 104 s211 - 0.50 * 10-122¢t0

10-24

11 - 1.00 * 10-1221>2 = 1 - A12 B11.00 * 10-122 + Á

¢t0 = 11.60 * 104 s221 - 1.00 * 10-12

u2

c2
=

1300 m>s2213.00 * 108 m>s22 = 1.00 * 10-12

Example 37.3 Just when is it proper?

Mavis boards a spaceship and then zips past Stanley on earth at a
relative speed of 0.600 At the instant she passes him, they both
start timers. (a) A short time later Stanley measures that Mavis has
traveled beyond him and is passing a space station.
What does Stanley’s timer read as she passes the space station?
What does Mavis’s timer read? (b) Stanley starts to blink just as
Mavis flies past him, and Mavis measures that the blink takes
0.400 s from beginning to end. According to Stanley, what is the
duration of his blink?

SOLUTION

IDENTIFY and SET UP: This problem involves time dilation for
two different sets of events measured in Stanley’s frame of refer-
ence (which we call ) and in Mavis’s frame of reference (which
we call ). The two events of interest in part (a) are when Mavis
passes Stanley and when Mavis passes the space station; the target
variables are the time intervals between these two events as meas-
ured in and in The two events in part (b) are the start and finish
of Stanley’s blink; the target variable is the time interval between
these two events as measured in 

EXECUTE: (a) The two events, Mavis passing the earth and Mavis
passing the space station, occur at different positions in Stanley’s
frame but at the same position in Mavis’s frame. Hence Stanley

S.

S¿.S

S¿
S

9.00 * 107 m

c.
measures time interval while Mavis measures the proper
time As measured by Stanley, Mavis moves at 

and travels 
in time 

From Eq. (37.6), Mavis’s timer reads an elapsed time of

(b) It is tempting to answer that Stanley’s blink lasts 0.500 s in
his frame. But this is wrong, because we are now considering a
different pair of events than in part (a). The start and finish of 
Stanley’s blink occur at the same point in his frame but at different
positions in Mavis’s frame so the time interval of 0.400 s that she
measures between these events is equal to The duration of the
blink measured on Stanley’s timer is the proper time 

EVALUATE: This example illustrates the relativity of simultaneity.
In Mavis’s frame she passes the space station at the same instant
that Stanley finishes his blink, 0.400 s after she passed Stanley.
Hence these two events are simultaneous to Mavis in frame But
these two events are not simultaneous to Stanley in his frame S:
According to his timer, he finishes his blink after 0.320 s and
Mavis passes the space station after 0.500 s.

S¿.

¢t0 = ¢t 21 - u2>c2 = 0.400 s 21 - 10.60022 = 0.320 s

¢t0:
¢t.

S¿,
S

¢t0 = ¢t 21 - u2>c2 = 0.500 s 21 - 10.60022 = 0.400 s

0.500 s.¢t = 19.00 * 107 m2>11.80 * 108 m>s2 =107 m
9.00 *0.60013.00 * 108 m>s2 = 1.80 * 108 m>s 0.600c =¢t0.

¢t,

The Twin Paradox
Equations (37.6) and (37.8) for time dilation suggest an apparent paradox called
the twin paradox. Consider identical twin astronauts named Eartha and Astrid.
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An event that takes time Dto if it is at rest with 
respect to the observer will take longer time if it 

is travelling with respect to the observer, i.e. 
time seems to run slower (dilated) for an object 
which is travelling with respect to the observer!

That guy’s
clock is slower.

Observer A

Observer B

u



After thinking for a while you will probably conclude 
that the above statement does not make sense 

because uniform motion is relative!

To observer B, he is at rest while A is moving, so he 
will also see A’s clock moving slower

That guy’s
clock is slower.

Observer A

Observer B

u



It seems that the two observers will have opposite 
answer to this question! Who is correct?

That guy’s
clock is slower.

Observer A

Observer B

u

That guy’s
clock is slower.



This objection is usually rephrased in the so-
called twin paradox. Suppose there is a pair 
of twins on earth. The first one, t1, remains on 
earth, while the second one, t2, is sent off in a 

rocket ship on a trip to a distant star.

t1 t2

Bye bye. See you.



t1

t2

MaMa!



t1
t2 30 years later…

(according to the clock on earth)



t1
t2

The question is,

is t1 older than t2?

The reverse?

Or do they have the same age?

I’m back!



t1 t2

You are moving.
You are younger

No. I see you
are moving. You

are younger.

According to t1, time runs slower in t2 since t2 is 
moving with respect to earth. Therefore, t2 is 

younger. However, motion is relative, and according 
to t2, time runs slower in t1 since the earth is moving 

with respect to the rocket! Who is correct?



The answer to this question lies on the observation that 
only motions with uniform velocities are relative. Motions 
that involve acceleration are “absolute”. A person cannot 

detect uniform motion, but he/she can tell whether 
he/she is accelerating or not! 

t2

Oh! I can
feel it!



The motion of the two twins is not totally relative to 
one another. In order for t2 to come back, he has to 
decelerate to change direction when returning and 

also when landing on earth.

t1 t2

Oh! Oh!



t1 t2
So you are younger. I see.

Our above analysis is applicable only in an inertial reference 
frame, i.e. only applicable to t1. Therefore, the conclusion of 

t1 that t2 is younger should be the correct one. What t2
should observe is that although the clock of t1 seems to run 
slower when he is in uniform motion, he will find that when 

he is accelerating/decelerating, the clock of t1 suddenly run 
much, much faster. The net result is that t1 is older when t2

returns to earth.



Classwork
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Q37.12 When a monochromatic light source moves toward an
observer, its wavelength appears to be shorter than the value meas-
ured when the source is at rest. Does this contradict the hypothesis
that the speed of light is the same for all observers? Explain.
Q37.13 In principle, does a hot gas have more mass than the same
gas when it is cold? Explain. In practice, would this be a measura-
ble effect? Explain.
Q37.14 Why do you think the development of Newtonian mechanics
preceded the more refined relativistic mechanics by so many years?

EXERCISES
Section 37.2 Relativity of Simultaneity
37.1 . Suppose the two lightning bolts shown in Fig. 37.5a are
simultaneous to an observer on the train. Show that they are not
simultaneous to an observer on the ground. Which lightning strike
does the ground observer measure to come first?

Section 37.3 Relativity of Time Intervals
37.2 . The positive muon an unstable particle, lives on
average (measured in its own frame of reference)
before decaying. (a) If such a particle is moving, with respect to
the laboratory, with a speed of what average lifetime is
measured in the laboratory? (b) What average distance, measured
in the laboratory, does the particle move before decaying?
37.3 . How fast must a rocket travel relative to the earth so that time
in the rocket “slows down” to half its rate as measured by earth-based
observers? Do present-day jet planes approach such speeds?
37.4 . A spaceship flies past Mars with a speed of relative
to the surface of the planet. When the spaceship is directly over-
head, a signal light on the Martian surface blinks on and then off.
An observer on Mars measures that the signal light was on for

(a) Does the observer on Mars or the pilot on the space-
ship measure the proper time? (b) What is the duration of the light
pulse measured by the pilot of the spaceship?
37.5 . The negative pion is an unstable particle with an
average lifetime of (measured in the rest frame of
the pion). (a) If the pion is made to travel at very high speed rela-
tive to a laboratory, its average lifetime is measured in the labora-
tory to be Calculate the speed of the pion
expressed as a fraction of (b) What distance, measured in the
laboratory, does the pion travel during its average lifetime?
37.6 .. As you pilot your space utility vehicle at a constant speed
toward the moon, a race pilot flies past you in her spaceracer at a
constant speed of relative to you. At the instant the space-
racer passes you, both of you start timers at zero. (a) At the instant
when you measure that the spaceracer has traveled 
past you, what does the race pilot read on her timer? (b) When the
race pilot reads the value calculated in part (a) on her timer, what
does she measure to be your distance from her? (c) At the instant
when the race pilot reads the value calculated in part (a) on her
timer, what do you read on yours?
37.7 .. A spacecraft flies away from the earth with a speed of

relative to the earth and then returns at the same
speed. The spacecraft carries an atomic clock that has been care-
fully synchronized with an identical clock that remains at rest on
earth. The spacecraft returns to its starting point 365 days (1 year)
later, as measured by the clock that remained on earth. What is the
difference in the elapsed times on the two clocks, measured in
hours? Which clock, the one in the spacecraft or the one on earth,
shows the shorter elapsed time?

4.80 * 106 m>s

1.20 * 108 m

0.800c

c.
4.20 * 10-7 s.

2.60 * 10-8 s
1p-2

75.0 ms.

0.985c

0.900c,

2.20 * 10-6 s
1m+2,

37.8 . An alien spacecraft is flying overhead at a great distance as
you stand in your backyard. You see its searchlight blink on for

The first officer on the spacecraft measures that the search-
light is on for (a) Which of these two measured times is
the proper time? (b) What is the speed of the spacecraft relative to
the earth expressed as a fraction of the speed of light c?

Section 37.4 Relativity of Length
37.9 . A spacecraft of the Trade Federation flies past the planet
Coruscant at a speed of . A scientist on Coruscant measures
the length of the moving spacecraft to be The spacecraft
later lands on Coruscant, and the same scientist measures the
length of the now stationary spacecraft. What value does she get?
37.10 . A meter stick moves past you at great speed. Its motion
relative to you is parallel to its long axis. If you measure the length
of the moving meter stick to be —for
example, by comparing it to a 1-foot ruler that is at rest relative to
you—at what speed is the meter stick moving relative to you?
37.11 .. Why Are We Bombarded by Muons? Muons are
unstable subatomic particles that decay to electrons with a mean
lifetime of They are produced when cosmic rays bombard
the upper atmosphere about 10 km above the earth’s surface, and
they travel very close to the speed of light. The problem we want
to address is why we see any of them at the earth’s surface. 
(a) What is the greatest distance a muon could travel during its

lifetime? (b) According to your answer in part (a), it would
seem that muons could never make it to the ground. But the 
lifetime is measured in the frame of the muon, and muons are mov-
ing very fast. At a speed of what is the mean lifetime of a
muon as measured by an observer at rest on the earth? How far
would the muon travel in this time? Does this result explain why
we find muons in cosmic rays? (c) From the point of view of the
muon, it still lives for only so how does it make it to the
ground? What is the thickness of the 10 km of atmosphere through
which the muon must travel, as measured by the muon? Is it now
clear how the muon is able to reach the ground?
37.12 . An unstable particle is created in the upper atmosphere
from a cosmic ray and travels straight down toward the surface of
the earth with a speed of relative to the earth. A scientist
at rest on the earth’s surface measures that the particle is created at
an altitude of (a) As measured by the scientist, how much
time does it take the particle to travel the to the surface of
the earth? (b) Use the length-contraction formula to calculate the
distance from where the particle is created to the surface of the
earth as measured in the particle’s frame. (c) In the particle’s
frame, how much time does it take the particle to travel from
where it is created to the surface of the earth? Calculate this time
both by the time dilation formula and from the distance calculated
in part (b). Do the two results agree?
37.13 . As measured by an observer on the earth, a spacecraft
runway on earth has a length of (a) What is the length of
the runway as measured by a pilot of a spacecraft flying past at a
speed of relative to the earth? (b) An observer on
earth measures the time interval from when the spacecraft is
directly over one end of the runway until it is directly over the
other end. What result does she get? (c) The pilot of the spacecraft
measures the time it takes him to travel from one end of the run-
way to the other end. What value does he get?
37.14 . A rocket ship flies past the earth at 85.0% of the speed of
light. Inside, an astronaut who is undergoing a physical examination
is having his height measured while he is lying down parallel to the
direction the rocket ship is moving. (a) If his height is measured to

4.00 * 107 m>s 3600 m.

45.0 km
45.0 km.

0.99540c

2.2 ms,

0.999c,

2.2-ms
2.2-ms

2.2 ms.

(1 ft = 0.3048 m21.00 ft

74.0 m.
0.600c

12.0 ms.
0.190 s.
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(b) 0 2

1 (75.0 s) 435 s
1 (0.985)

t tγ µ µ∆ = ∆ = =
−

 

EVALUATE:   The pulse lasts for a shorter time relative to the rocket than it does relative to the Mars 
observer. 

 37.5. (a) IDENTIFY and SET UP:   8 7
0 2.60 10 s; 4.20 10 s.t t− −∆ = × ∆ = ×  In the lab frame the pion is created and 

decays at different points, so this time is not the proper time. 

EXECUTE:   
22

0 0
22 2

says1
1 /

t u tt
tcu c

∆ ∆⎛ ⎞∆ = − = ⎜ ⎟∆⎝ ⎠−
 

22 8
0

7
2 60 10 s1 1 0 998; 0 998
4 20 10 s

u t u c
c t

−

−
⎛ ⎞∆ . ×⎛ ⎞= − = − = . = .⎜ ⎟⎜ ⎟ ⎜ ⎟∆ . ×⎝ ⎠ ⎝ ⎠

 

EVALUATE:   ,u c<  as it must be, but /u c  is close to unity and the time dilation effects are large. 
(b) IDENTIFY and SET UP:   The speed in the laboratory frame is 0.998 ;u c=  the time measured in this 
frame is ,t∆  so the distance as measured in this frame is .d u t= ∆  

EXECUTE:   8 7(0 998)(2 998 10 m/s)(4 20 10 s) 126 md −= . . × . × =  
EVALUATE:   The distance measured in the pion’s frame will be different because the time measured in the 
pion’s frame is different (shorter). 

 37.6. IDENTIFY:   Apply Eq. (37.8). 
SET UP:   For part (a) the proper time is measured by the race pilot. 1.667.γ =  

EXECUTE:   (a) 
8

08
1.20 10  m 0.500 s0.500 s.  0.300 s.

1.667(0.800)(3.00 10  m/s)
tt t

γ
× ∆∆ = = ∆ = = =

×
 

(b) 7(0.300 s)(0.800 ) 7.20 10 m.c = ×  

(c) You read 
8

8
1 20 10 m 0 500 s.

(0 800)(3 10 m/s)
. × = .

. ×
 

EVALUATE:   The two events are the spaceracer passing you and the spaceracer reaching a point 
81.20 10 m×  from you. The timer traveling with the spaceracer measures the proper time between these 

two events. 
 37.7. IDENTIFY and SET UP:   A clock moving with respect to an observer appears to run more slowly than a 

clock at rest in the observer’s frame. The clock in the spacecraft measurers the proper time 0.t∆  
365 days 8760 hours.t∆ = =  

EXECUTE:   The clock on the moving spacecraft runs slow and shows the smaller elapsed time. 
2 2 6 8 2

0 1 / (8760 h) 1 (4.80 10 /3.00 10 ) 8758.88 h.t t u c∆ = ∆ − = − × × =  The difference in elapsed times is 
8760 h 8758.88 h 1.12 h.− =  

 37.8. IDENTIFY and SET UP:   The proper time is measured in the frame where the two events occur at the same 
point. 
EXECUTE:   (a) The time of 12.0 ms measured by the first officer on the craft is the proper time. 

(b) 0
2 21 /

tt
u c

∆∆ =
−

 gives 2 3 2
01 ( / ) 1 (12 0 10 /0 190) 0 998 .u c t t c c−= − ∆ ∆ = − . × . = .  

EVALUATE:   The observer at rest with respect to the searchlight measures a much shorter duration  
for the event. 

 37.9. IDENTIFY and SET UP:   2 2
0 1 / .l l u c= −  The length measured when the spacecraft is moving is 

074.0 m;l l=  is the length measured in a frame at rest relative to the spacecraft. 

EXECUTE:   0 2 2 2

74 0 m 92 5 m
1 / 1 (0 600 / )

ll
u c c c

.= = = . .
− − .
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EVALUATE:   0 .l l>  The moving spacecraft appears to an observer on the planet to be shortened along the 
direction of motion. 

 37.10. IDENTIFY and SET UP:   When the meterstick is at rest with respect to you, you measure its length to be 
1.000 m, and that is its proper length, 0.l  0.3048 m.l =  

EXECUTE:   2 2
0 1 /l l u c= −  gives 2 2 8

01 ( / ) 1 (0.3048/1.00) 0.9524 2.86 10 m/s.u c l l c c= − = − = = ×  

 37.11. IDENTIFY and SET UP:   The 2.2 sµ  lifetime is 0t∆  and the observer on earth measures .t∆  The 
atmosphere is moving relative to the muon so in its frame the height of the atmosphere is l and 0l   
is 10 km.  
EXECUTE:   (a) The greatest speed the muon can have is c, so the greatest distance it can travel in 

62 2 10 s−. ×  is 8 6(3 00 10 m/s)(2 2 10 s) 660 m 0 66 km.d vt −= = . × . × = = .  

(b) 
6

50
2 2 2

2.2 10 s 4.9 10 s
1 / 1 (0.999)

tt
u c

−
−∆ ×∆ = = = ×

− −
 

8 5(0.999)(3.00 10 m/s)(4.9 10 s) 15 kmd vt −= = × × =  
In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime. 

(c) 2 2 2
0 1 / (10 km) 1 (0.999) 0.45 kml l u c= − = − =  

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime. 
 37.12. IDENTIFY and SET UP:   The scientist at rest on the earth’s surface measures the proper length of the 

separation between the point where the particle is created and the surface of the earth, so 0 45.0 km.l =  
The transit time measured in the particle’s frame is the proper time, 0.t∆  

EXECUTE:   (a) 
3

40
8

45 0 10 m 1 51 10 s
(0 99540)(3 00 10 m/s)

lt
v

−. ×= = = . ×
. . ×

 

(b) 2 2 2
0 1 / (45.0 km) 1 (0.99540) 4.31 kml l u c= − = − =  

(c) time dilation formula: 2 2 4 2 5
0 1 / (1.51 10 s) 1 (0.99540) 1.44 10 st t u c − −∆ = ∆ − = × − = ×  

from :l∆  
3

5
8

4 31 10 m 1 44 10 s
(0 99540)(3 00 10 m/s)

lt
v

−. ×= = = . ×
. . ×

 

The two results agree. 
 37.13. IDENTIFY:   Apply Eq. (37.16). 

SET UP:   The proper length 0l  of the runway is its length measured in the earth’s frame. The proper time 

0t∆  for the time interval for the spacecraft to travel from one end of the runway to the other is the time 
interval measured in the frame of the spacecraft. 
EXECUTE:   (a) 0 3600 m.l =  

2 7 2

0 2 8 2
(4.00 10 m/s)1 (3600 m) 1 (3600 m)(0.991) 3568 m.
(3.00 10 m/s)

ul l
c

×= − = − = =
×

 

(b) 50
7

3600 m 9.00 10 s.
4.00 10 m/s

lt
u

−∆ = = = ×
×

 

(c) 5
0 7

3568 m 8.92 10 s.
4.00 10 m/s

lt
u

−∆ = = = ×
×

 

EVALUATE:   1 0.991,
γ

=  so Eq. (37.8) gives 
5

58.92 10 s 9.00 10 s.
0.991

t
−

−×∆ = = ×  The result from length 

contraction is consistent with the result from time dilation. 
 37.14. IDENTIFY:   The astronaut lies along the motion of the rocket, so his height will be Lorentz-contracted. 

SET UP:The doctor in the rocket measures his proper length 0.l  



Space contraction



Space contraction is a natural consequence of 
time dilation if we require consistency in 

observations by the observers.

OK.
Brother, check

the clock.



From my clock,
it takes Dt to cross.

u

Lo

Let’s consider a field of length Lo
according to an observer S at rest 
with the field, and a car travelling 
with velocity u takes time Dt = Lo/u 
to cross the field according to 
observer S. observer S



But it is a bit strange
on his clock…

u

Lo

Now let’s us consider what happens 
to a clock inside the car. Well, if 
you remember time dilation, S will 
find that her clock runs faster than 
the clock inside the car.

observer S

?



According to his clock, 
it takes Dto to cross.

u

Lo

To the clock inside the car, the 
time Dto take to travel through the 
field is 

observer S

?

Δ𝑡" =
1
𝛾 Δ𝑡 = 1 −

𝑢
𝑐

,� 𝐿"
𝑢



u

Lo

Since the car is travelling with 
velocity u with respect to the field, 
from his point of view, the field is 
moving towards him at a speed of u

observer S

Why the field
seems shorter?



u

Lo

The length of the field he observed 
will be

observer S

Why the field
seems shorter?

which is shorter than Lo!

𝐿 =
𝐿"
𝛾 = 1 −

𝑢
𝑐

,�
𝐿"



u

Lo

This is called the phenomenon of space 
contraction. To an observer, everything 
that is travelling with velocity u with 
respect to him/her will be “shorter” in the 
direction of motion when compared with 
their length at rest! 

observer S

BTW, why that guy
seems thinner?



Length contraction and proper length

• A length measured in the frame in which the body is at 
rest (the rest frame of the body) is called a proper
length.

• Thus l0 is a proper length in S', and the length 
measured in any other frame moving relative to S is 
lesser than l0. 

• This effect is called length contraction.
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Example 37.4 How long is the spaceship?

A spaceship flies past earth at a speed of 0.990 A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

SOLUTION

IDENTIFY and SET UP: This problem is about the nose-to-tail
length of the spaceship as measured on the spaceship and on earth.
This length is along the direction of relative motion (Fig. 37.13),
so there will be length contraction. The spaceship’s 400-m length
is the proper length because it is measured in the frame in which
the spaceship is at rest. Our target variable is the length l measured
in the earth frame, relative to which the spaceship is moving at

c.

EXECUTE: From Eq. (37.16), the length in the earth frame is

EVALUATE: The spaceship is shorter in a frame in which it is in
motion than in a frame in which it is at rest. To measure the length l,
two earth observers with synchronized clocks could measure the

l = l0B1 - u2

c2
= 1400 m2 21 - 10.99022 = 56.4 m

u = 0.990

l0

c.

positions of the two ends of the spaceship simultaneously in the
earth’s reference frame, as shown in Fig. 37.13. (These two meas-
urements will not appear simultaneous to an observer in the
spaceship.)

For example, suppose a moving rod of length makes an angle with the
direction of relative motion (the as measured in its rest frame. Its length
component in that frame parallel to the motion, is contracted to

However, its length component perpendicular to the motion,
remains the same.l0 sinu0,

1l0 cosu02>g.
l0 cosu0,

x-axis2 u0l0

The two observers on earth (S ) must measure x2 and x1 simultaneously
to obtain the correct length l = x2 – x1 in their frame of reference. 

x
O

y

0.990c

S
x2

x1

O1 O2

l

l0 ! 400 m

37.13 Measuring the length of a moving spaceship.

Problem-Solving Strategy 37.2 Length Contraction

IDENTIFY the relevant concepts: The concept of length contraction
is used whenever we compare the length of an object as measured
by observers in different inertial frames of reference.

SET UP the problem using the following steps:
1. Decide what defines the length in question. If the problem

describes an object such as a ruler, it is just the distance between
the ends of the object. If the problem is about a distance between
two points in space, it helps to envision an object like a ruler that
extends from one point to the other.

2. Identify the target variable.

EXECUTE the solution as follows:
1. Determine the reference frame in which the object in question

is at rest. In this frame, the length of the object is its proper

length In a second reference frame moving at speed rela-
tive to the first frame, the object has contracted length 

2. Keep in mind that length contraction occurs only for lengths
parallel to the direction of relative motion of the two frames.
Any length that is perpendicular to the relative motion is the
same in both frames.

3. Use Eq. (37.16) to relate and and then solve for the target
variable.

EVALUATE your answer: Check that your answers make sense: is
never larger than and is never greater than c.ul0,

l

l0,l

l.
ul0.

Example 37.5 How far apart are the observers?

Observers and in Fig. 37.13 are 56.4 m apart on the earth.
How far apart does the spaceship crew measure them to be?

SOLUTION

IDENTIFY and SET UP: In this example the 56.4-m distance is the
proper length . It represents the length of a ruler that extendsl0

O2O1 from to and is at rest in the earth frame in which the
observers are at rest. Our target variable is the length l of this ruler
measured in the spaceship frame, in which the earth and ruler are
moving at c.u = 0.990

O2O1
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Example 37.4 How long is the spaceship?

A spaceship flies past earth at a speed of 0.990 A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

SOLUTION

IDENTIFY and SET UP: This problem is about the nose-to-tail
length of the spaceship as measured on the spaceship and on earth.
This length is along the direction of relative motion (Fig. 37.13),
so there will be length contraction. The spaceship’s 400-m length
is the proper length because it is measured in the frame in which
the spaceship is at rest. Our target variable is the length l measured
in the earth frame, relative to which the spaceship is moving at

c.

EXECUTE: From Eq. (37.16), the length in the earth frame is

EVALUATE: The spaceship is shorter in a frame in which it is in
motion than in a frame in which it is at rest. To measure the length l,
two earth observers with synchronized clocks could measure the

l = l0B1 - u2

c2
= 1400 m2 21 - 10.99022 = 56.4 m

u = 0.990

l0

c.

positions of the two ends of the spaceship simultaneously in the
earth’s reference frame, as shown in Fig. 37.13. (These two meas-
urements will not appear simultaneous to an observer in the
spaceship.)

For example, suppose a moving rod of length makes an angle with the
direction of relative motion (the as measured in its rest frame. Its length
component in that frame parallel to the motion, is contracted to

However, its length component perpendicular to the motion,
remains the same.l0 sinu0,

1l0 cosu02>g.
l0 cosu0,

x-axis2 u0l0

The two observers on earth (S ) must measure x2 and x1 simultaneously
to obtain the correct length l = x2 – x1 in their frame of reference. 
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37.13 Measuring the length of a moving spaceship.

Problem-Solving Strategy 37.2 Length Contraction

IDENTIFY the relevant concepts: The concept of length contraction
is used whenever we compare the length of an object as measured
by observers in different inertial frames of reference.

SET UP the problem using the following steps:
1. Decide what defines the length in question. If the problem

describes an object such as a ruler, it is just the distance between
the ends of the object. If the problem is about a distance between
two points in space, it helps to envision an object like a ruler that
extends from one point to the other.

2. Identify the target variable.

EXECUTE the solution as follows:
1. Determine the reference frame in which the object in question

is at rest. In this frame, the length of the object is its proper

length In a second reference frame moving at speed rela-
tive to the first frame, the object has contracted length 

2. Keep in mind that length contraction occurs only for lengths
parallel to the direction of relative motion of the two frames.
Any length that is perpendicular to the relative motion is the
same in both frames.

3. Use Eq. (37.16) to relate and and then solve for the target
variable.

EVALUATE your answer: Check that your answers make sense: is
never larger than and is never greater than c.ul0,
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l0,l

l.
ul0.
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37.5 The Lorentz Transformations 1237

How an Object Moving Near Would Appear
Let’s think a little about the visual appearance of a moving three-dimensional
body. If we could see the positions of all points of the body simultaneously, it
would appear to shrink only in the direction of motion. But we don’t see all the
points simultaneously; light from points farther from us takes longer to reach us
than does light from points near to us, so we see the farther points at the positions
they had at earlier times.

Suppose we have a rectangular rod with its faces parallel to the coordinate
planes. When we look end-on at the center of the closest face of such a rod at rest,
we see only that face. (See the center rod in computer-generated Fig. 37.14a.) But
when that rod is moving past us toward the right at an appreciable fraction of the
speed of light, we may also see its left side because of the earlier-time effect just
described. That is, we can see some points that we couldn’t see when the rod was
at rest because the rod moves out of the way of the light rays from those points to
us. Conversely, some light that can get to us when the rod is at rest is blocked by
the moving rod. Because of all this, the rods in Figs. 37.14b and 37.14c appear
rotated and distorted.

c

EXECUTE: As in Example 37.4, but with ,

EVALUATE: This answer does not say that the crew measures their
spaceship to be both 400 m long and 7.96 m long. As measured on

l = l0B1 - u2

c2
= 156.4 m2 21 - 10.99022 = 7.96 m

l0 = 56.4 m earth, the tail of the spacecraft is at the position of at the same
instant that the nose of the spacecraft is at the position of .
Hence the length of the spaceship measured on earth equals the
56.4-m distance between and . But in the spaceship frame 
and are only 7.96 m apart, and the nose (which is 400 m in front
of the tail) passes before the tail passes .O1O2

O2

O1O2O1

O2

O1

Test Your Understanding of Section 37.4 A miniature spaceship is
flying past you, moving horizontally at a substantial fraction of the speed of light.
At a certain instant, you observe that the nose and tail of the spaceship align
exactly with the two ends of a meter stick that you hold in your hands. Rank the follow-
ing distances in order from longest to shortest: (i) the proper length of the meter stick; 
(ii) the proper length of the spaceship; (iii) the length of the spaceship measured in your
frame of reference; (iv) the length of the meter stick measured in the spaceship’s frame 
of reference. ❙

37.5 The Lorentz Transformations
In Section 37.1 we discussed the Galilean coordinate transformation equations,
Eqs. (37.1). They relate the coordinates of a point in frame of reference 
to the coordinates of the point in a second frame The second frame
moves with constant speed relative to in the positive direction along the com-
mon This transformation also assumes that the time scale is the same in
the two frames of reference, as expressed by the additional relationship 
This Galilean transformation, as we have seen, is valid only in the limit when 
approaches zero. We are now ready to derive more general transformations that
are consistent with the principle of relativity. The more general relationships are
called the Lorentz transformations.

The Lorentz Coordinate Transformation
Our first question is this: When an event occurs at point at time as
observed in a frame of reference what are the coordinates and time

of the event as observed in a second frame moving relative to with con-
stant speed in the 

To derive the coordinate transformation, we refer to Fig. 37.15 (next page),
which is the same as Fig. 37.3. As before, we assume that the origins coincide at
the initial time Then in the distance from to at time is tO¿OSt = 0 = t¿.

+x-direction?u
SS¿t¿
z¿2y¿,1x¿,S,

t,z2y,1x,

u
t = t¿.

x-x¿-axis.
Su

S¿.z¿2y¿,1x¿,
Sz2y,1x,

(a) Array at rest

(b) Array moving to the right at 0.2c

(c) Array moving to the right at 0.9c

37.14 Computer simulation of the
appearance of an array of 25 rods with
square cross section. The center rod is
viewed end-on. The simulation ignores
color changes in the array caused by the
Doppler effect (see Section 37.6).
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Example 37.4 How long is the spaceship?

A spaceship flies past earth at a speed of 0.990 A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

SOLUTION

IDENTIFY and SET UP: This problem is about the nose-to-tail
length of the spaceship as measured on the spaceship and on earth.
This length is along the direction of relative motion (Fig. 37.13),
so there will be length contraction. The spaceship’s 400-m length
is the proper length because it is measured in the frame in which
the spaceship is at rest. Our target variable is the length l measured
in the earth frame, relative to which the spaceship is moving at

c.

EXECUTE: From Eq. (37.16), the length in the earth frame is

EVALUATE: The spaceship is shorter in a frame in which it is in
motion than in a frame in which it is at rest. To measure the length l,
two earth observers with synchronized clocks could measure the

l = l0B1 - u2

c2
= 1400 m2 21 - 10.99022 = 56.4 m

u = 0.990

l0

c.

positions of the two ends of the spaceship simultaneously in the
earth’s reference frame, as shown in Fig. 37.13. (These two meas-
urements will not appear simultaneous to an observer in the
spaceship.)

For example, suppose a moving rod of length makes an angle with the
direction of relative motion (the as measured in its rest frame. Its length
component in that frame parallel to the motion, is contracted to

However, its length component perpendicular to the motion,
remains the same.l0 sinu0,

1l0 cosu02>g.
l0 cosu0,

x-axis2 u0l0

The two observers on earth (S ) must measure x2 and x1 simultaneously
to obtain the correct length l = x2 – x1 in their frame of reference. 
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l0 ! 400 m

37.13 Measuring the length of a moving spaceship.

Problem-Solving Strategy 37.2 Length Contraction

IDENTIFY the relevant concepts: The concept of length contraction
is used whenever we compare the length of an object as measured
by observers in different inertial frames of reference.

SET UP the problem using the following steps:
1. Decide what defines the length in question. If the problem

describes an object such as a ruler, it is just the distance between
the ends of the object. If the problem is about a distance between
two points in space, it helps to envision an object like a ruler that
extends from one point to the other.

2. Identify the target variable.

EXECUTE the solution as follows:
1. Determine the reference frame in which the object in question

is at rest. In this frame, the length of the object is its proper

length In a second reference frame moving at speed rela-
tive to the first frame, the object has contracted length 

2. Keep in mind that length contraction occurs only for lengths
parallel to the direction of relative motion of the two frames.
Any length that is perpendicular to the relative motion is the
same in both frames.

3. Use Eq. (37.16) to relate and and then solve for the target
variable.

EVALUATE your answer: Check that your answers make sense: is
never larger than and is never greater than c.ul0,

l

l0,l

l.
ul0.

Example 37.5 How far apart are the observers?

Observers and in Fig. 37.13 are 56.4 m apart on the earth.
How far apart does the spaceship crew measure them to be?

SOLUTION

IDENTIFY and SET UP: In this example the 56.4-m distance is the
proper length . It represents the length of a ruler that extendsl0

O2O1 from to and is at rest in the earth frame in which the
observers are at rest. Our target variable is the length l of this ruler
measured in the spaceship frame, in which the earth and ruler are
moving at c.u = 0.990

O2O1
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Example of length contraction

• The speed at which electrons 
traverse the 3-km beam line of the 
SLAC National Accelerator 
Laboratory is slower than c by less 
than 1 cm/s. 

• As measured in the reference 
frame of such an electron, the 
beam line (which extends from the 
top to the bottom of this 
photograph) is only about 15 cm 
long!



Classwork

1254 CHAPTER 37 Relativity

Q37.12 When a monochromatic light source moves toward an
observer, its wavelength appears to be shorter than the value meas-
ured when the source is at rest. Does this contradict the hypothesis
that the speed of light is the same for all observers? Explain.
Q37.13 In principle, does a hot gas have more mass than the same
gas when it is cold? Explain. In practice, would this be a measura-
ble effect? Explain.
Q37.14 Why do you think the development of Newtonian mechanics
preceded the more refined relativistic mechanics by so many years?

EXERCISES
Section 37.2 Relativity of Simultaneity
37.1 . Suppose the two lightning bolts shown in Fig. 37.5a are
simultaneous to an observer on the train. Show that they are not
simultaneous to an observer on the ground. Which lightning strike
does the ground observer measure to come first?

Section 37.3 Relativity of Time Intervals
37.2 . The positive muon an unstable particle, lives on
average (measured in its own frame of reference)
before decaying. (a) If such a particle is moving, with respect to
the laboratory, with a speed of what average lifetime is
measured in the laboratory? (b) What average distance, measured
in the laboratory, does the particle move before decaying?
37.3 . How fast must a rocket travel relative to the earth so that time
in the rocket “slows down” to half its rate as measured by earth-based
observers? Do present-day jet planes approach such speeds?
37.4 . A spaceship flies past Mars with a speed of relative
to the surface of the planet. When the spaceship is directly over-
head, a signal light on the Martian surface blinks on and then off.
An observer on Mars measures that the signal light was on for

(a) Does the observer on Mars or the pilot on the space-
ship measure the proper time? (b) What is the duration of the light
pulse measured by the pilot of the spaceship?
37.5 . The negative pion is an unstable particle with an
average lifetime of (measured in the rest frame of
the pion). (a) If the pion is made to travel at very high speed rela-
tive to a laboratory, its average lifetime is measured in the labora-
tory to be Calculate the speed of the pion
expressed as a fraction of (b) What distance, measured in the
laboratory, does the pion travel during its average lifetime?
37.6 .. As you pilot your space utility vehicle at a constant speed
toward the moon, a race pilot flies past you in her spaceracer at a
constant speed of relative to you. At the instant the space-
racer passes you, both of you start timers at zero. (a) At the instant
when you measure that the spaceracer has traveled 
past you, what does the race pilot read on her timer? (b) When the
race pilot reads the value calculated in part (a) on her timer, what
does she measure to be your distance from her? (c) At the instant
when the race pilot reads the value calculated in part (a) on her
timer, what do you read on yours?
37.7 .. A spacecraft flies away from the earth with a speed of

relative to the earth and then returns at the same
speed. The spacecraft carries an atomic clock that has been care-
fully synchronized with an identical clock that remains at rest on
earth. The spacecraft returns to its starting point 365 days (1 year)
later, as measured by the clock that remained on earth. What is the
difference in the elapsed times on the two clocks, measured in
hours? Which clock, the one in the spacecraft or the one on earth,
shows the shorter elapsed time?

4.80 * 106 m>s

1.20 * 108 m

0.800c

c.
4.20 * 10-7 s.

2.60 * 10-8 s
1p-2

75.0 ms.

0.985c

0.900c,

2.20 * 10-6 s
1m+2,

37.8 . An alien spacecraft is flying overhead at a great distance as
you stand in your backyard. You see its searchlight blink on for

The first officer on the spacecraft measures that the search-
light is on for (a) Which of these two measured times is
the proper time? (b) What is the speed of the spacecraft relative to
the earth expressed as a fraction of the speed of light c?

Section 37.4 Relativity of Length
37.9 . A spacecraft of the Trade Federation flies past the planet
Coruscant at a speed of . A scientist on Coruscant measures
the length of the moving spacecraft to be The spacecraft
later lands on Coruscant, and the same scientist measures the
length of the now stationary spacecraft. What value does she get?
37.10 . A meter stick moves past you at great speed. Its motion
relative to you is parallel to its long axis. If you measure the length
of the moving meter stick to be —for
example, by comparing it to a 1-foot ruler that is at rest relative to
you—at what speed is the meter stick moving relative to you?
37.11 .. Why Are We Bombarded by Muons? Muons are
unstable subatomic particles that decay to electrons with a mean
lifetime of They are produced when cosmic rays bombard
the upper atmosphere about 10 km above the earth’s surface, and
they travel very close to the speed of light. The problem we want
to address is why we see any of them at the earth’s surface. 
(a) What is the greatest distance a muon could travel during its

lifetime? (b) According to your answer in part (a), it would
seem that muons could never make it to the ground. But the 
lifetime is measured in the frame of the muon, and muons are mov-
ing very fast. At a speed of what is the mean lifetime of a
muon as measured by an observer at rest on the earth? How far
would the muon travel in this time? Does this result explain why
we find muons in cosmic rays? (c) From the point of view of the
muon, it still lives for only so how does it make it to the
ground? What is the thickness of the 10 km of atmosphere through
which the muon must travel, as measured by the muon? Is it now
clear how the muon is able to reach the ground?
37.12 . An unstable particle is created in the upper atmosphere
from a cosmic ray and travels straight down toward the surface of
the earth with a speed of relative to the earth. A scientist
at rest on the earth’s surface measures that the particle is created at
an altitude of (a) As measured by the scientist, how much
time does it take the particle to travel the to the surface of
the earth? (b) Use the length-contraction formula to calculate the
distance from where the particle is created to the surface of the
earth as measured in the particle’s frame. (c) In the particle’s
frame, how much time does it take the particle to travel from
where it is created to the surface of the earth? Calculate this time
both by the time dilation formula and from the distance calculated
in part (b). Do the two results agree?
37.13 . As measured by an observer on the earth, a spacecraft
runway on earth has a length of (a) What is the length of
the runway as measured by a pilot of a spacecraft flying past at a
speed of relative to the earth? (b) An observer on
earth measures the time interval from when the spacecraft is
directly over one end of the runway until it is directly over the
other end. What result does she get? (c) The pilot of the spacecraft
measures the time it takes him to travel from one end of the run-
way to the other end. What value does he get?
37.14 . A rocket ship flies past the earth at 85.0% of the speed of
light. Inside, an astronaut who is undergoing a physical examination
is having his height measured while he is lying down parallel to the
direction the rocket ship is moving. (a) If his height is measured to

4.00 * 107 m>s 3600 m.

45.0 km
45.0 km.

0.99540c

2.2 ms,

0.999c,

2.2-ms
2.2-ms

2.2 ms.

(1 ft = 0.3048 m21.00 ft

74.0 m.
0.600c

12.0 ms.
0.190 s.
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EVALUATE:   0 .l l>  The moving spacecraft appears to an observer on the planet to be shortened along the 
direction of motion. 

 37.10. IDENTIFY and SET UP:   When the meterstick is at rest with respect to you, you measure its length to be 
1.000 m, and that is its proper length, 0.l  0.3048 m.l =  

EXECUTE:   2 2
0 1 /l l u c= −  gives 2 2 8

01 ( / ) 1 (0.3048/1.00) 0.9524 2.86 10 m/s.u c l l c c= − = − = = ×  

 37.11. IDENTIFY and SET UP:   The 2.2 sµ  lifetime is 0t∆  and the observer on earth measures .t∆  The 
atmosphere is moving relative to the muon so in its frame the height of the atmosphere is l and 0l   
is 10 km.  
EXECUTE:   (a) The greatest speed the muon can have is c, so the greatest distance it can travel in 

62 2 10 s−. ×  is 8 6(3 00 10 m/s)(2 2 10 s) 660 m 0 66 km.d vt −= = . × . × = = .  

(b) 
6

50
2 2 2

2.2 10 s 4.9 10 s
1 / 1 (0.999)

tt
u c

−
−∆ ×∆ = = = ×

− −
 

8 5(0.999)(3.00 10 m/s)(4.9 10 s) 15 kmd vt −= = × × =  
In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime. 

(c) 2 2 2
0 1 / (10 km) 1 (0.999) 0.45 kml l u c= − = − =  

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime. 
 37.12. IDENTIFY and SET UP:   The scientist at rest on the earth’s surface measures the proper length of the 

separation between the point where the particle is created and the surface of the earth, so 0 45.0 km.l =  
The transit time measured in the particle’s frame is the proper time, 0.t∆  

EXECUTE:   (a) 
3

40
8

45 0 10 m 1 51 10 s
(0 99540)(3 00 10 m/s)

lt
v

−. ×= = = . ×
. . ×

 

(b) 2 2 2
0 1 / (45.0 km) 1 (0.99540) 4.31 kml l u c= − = − =  

(c) time dilation formula: 2 2 4 2 5
0 1 / (1.51 10 s) 1 (0.99540) 1.44 10 st t u c − −∆ = ∆ − = × − = ×  

from :l∆  
3

5
8

4 31 10 m 1 44 10 s
(0 99540)(3 00 10 m/s)

lt
v

−. ×= = = . ×
. . ×

 

The two results agree. 
 37.13. IDENTIFY:   Apply Eq. (37.16). 

SET UP:   The proper length 0l  of the runway is its length measured in the earth’s frame. The proper time 

0t∆  for the time interval for the spacecraft to travel from one end of the runway to the other is the time 
interval measured in the frame of the spacecraft. 
EXECUTE:   (a) 0 3600 m.l =  

2 7 2

0 2 8 2
(4.00 10 m/s)1 (3600 m) 1 (3600 m)(0.991) 3568 m.
(3.00 10 m/s)

ul l
c

×= − = − = =
×

 

(b) 50
7

3600 m 9.00 10 s.
4.00 10 m/s

lt
u

−∆ = = = ×
×

 

(c) 5
0 7

3568 m 8.92 10 s.
4.00 10 m/s

lt
u

−∆ = = = ×
×

 

EVALUATE:   1 0.991,
γ

=  so Eq. (37.8) gives 
5

58.92 10 s 9.00 10 s.
0.991

t
−

−×∆ = = ×  The result from length 

contraction is consistent with the result from time dilation. 
 37.14. IDENTIFY:   The astronaut lies along the motion of the rocket, so his height will be Lorentz-contracted. 

SET UP:The doctor in the rocket measures his proper length 0.l  


