Introduction to Relativity - 1




Galilean invariance




We have introduced the concept of inertial
reference frame




inertial frame

- Newton's Law is valid in all reference
frames that are not accelerating, or are not
themselves act upon by forces (Galilean
invariance).




The important of Galilean invariance can be
seen from the following example:

Courtesy Ulster Folk and Transport Museum

This is a very big boat, and is very stable so that
you do not feel any floating up-and-down motion of
the boat.




Suppose you are living at the interior of the boat and
have no window to look outside.




One day, you wake up from a nap, and out of
curiosity you want to find out whether the boat is...

ac’rually parkmg somewhere or is ’rr'avellng with a
uniform speed.

Can you find that out without asking someone, and
without going outside?







What Galilean invariance\

said is that you cannot
determine whether you
are moving (with
uniform velocity) or not
If you perform
experiments involving

Newton’'s Law inside the
boat, like looking at the
trajectory of a little ball
that you throw up, or
looking at the motion of

kanything you see. /




Natural Question:




Is there any fundamental reason why
Newton's Law cannot detect uniform
motions? Is it possible that it is a
fundamental nature of our universe that no
matter what tools (physical phenomena) you

use, you cannot tell whether something is
—__moving with uniform velocity or at res‘r%h

respect to our universe)?

This amazing fact is what inspires
Einstein to ask the following question




He investigate the consequence if
we cannot distinguish uniform
motion from rest using any E&M
(light) experiments.




The answer he obtained was revolutionary:

If we require that the physical laws of nature
have the absolute property that they

cannot distinguish uniform motions
from rest,

then distance and time must
become relative.




The length of fime between two
events and the distance between
two events that take place depends
on the status of the observer.




T

This is the essence of the
theory of special relativity




The relativeness of space and time has

only very small effect when the relative

speed between two objects is much less
than speed of light.




However, the effect becomes drastic
when the (relative) speed of motion is
close to speed of light.




Electromagnetism and Special Relativity




can you tell whether the train is moving with
uniform velocity or at rest?

No you can't.

(by Galileo relativity)




How about sending a light pulse?

Einstein's answer: " still you can't tell”.




Hey Kit, do Don’t ask
you think we Me. Ask
are moving’ Einstein.

Einstein realized that if Maxwell equations
appear the same in all inertial reference frames,
than uniform motion could not be detected by
experiments involving electricity and magnetism.




In particular, Einstein noticed that if Maxwell equation
is tThe same in all inertial reference frames, the speed
of light will be the same in all inertial reference
frames, independent of the motion of the object
sending and receiving the light signal!
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For example, the speed of light (relative to you)
is the same independent of whether you are
moving along the same direction or opposite
direction of the light beam.

C again |

How come?




Before Einstein, some people believed that EM waves
needs a medium, called Ether, to propagate.

Because EM waves can reach all places, it is believed
that it filled up our universe.

The speed of light, ¢, is the velocity the EM wave
travels relative to this fixed media .

=0)




To someone who is moving in Ether, the speed of light
will be different.

After Einstein, most people believe that there is no
Ether

EM waves can propagate in vacuum, and the speed of

light is the same for all observers.




Time Dilation when speed of light is the same at all

inertial reference frames




Let us consider the following simple experiment.

A flashing light bulb F is attached to a detector D
and separated by a distance L, from a mirror M. A
flash of light from the bulb is reflected back by

the mirror, and is detected by D. The time interval

between emission of detection is
M

2L
t0=_0

C

according to an observer at rest
with the device.




F D F D

Now let us examine the again from

another observer who is travelling from right to left

with velocity u. According to this observer, the whole
device is moving from left to right with velocity u.




F D

Let us denote the time between the emission and
detection of light be At for the second observer. The
whole device has traveled a distance uAt and the total

distance light has traveled is ) >
4L +u” (Ar)




F D F D

If the speed of light is still ¢, then

] +(ﬁj (A1) = (At0)2+(zj (A?)’
C

C




Time dilation and proper time

Let At, be the proper time between two events (i.e. the two events

occur at the same position).
An observer moving with constant speed u will measure the time interval

to be At, where

Proper time between two events (measured in rest frame)
_— - A Lorentz factor relating
I'ime dilation: > ‘
Yrner® v .- the two frames
Time interval between same events
measured in second frame of reference

N4 iuessase, _ Speed of lie
Lorentz factor - Yy = Spud of light
_in vacuum

Speed of one frame of reference relative to another




The Lorentz factor

As speed u approaches the speed of light c,
v approaches infinity.

 When uis very small
compared to ¢, y Is very
nearly equal
to 1.

If the relative speed u is
great enough that y is
appreciably greater than
1, the speed is said to
be relativistic.
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Proper time

IS the time
Interval between two
events that occur at the

* A frame of reference
can be pictured as a
coordinate system with
a grid of synchronized
CIOCkS, as in the ﬁgure The grid is three dimensional; identical planes

of clocks lie in front of and behind the page,

Eﬁt tr]fa ri£3r1t. connected by grid lines perpendicular to the

page.




m Time dilation at 0.990¢

High-energy subatomic particles coming from space interact with
atoms in the earth’s upper atmosphere, in some cases producing
unstable particles called muons. A muon decays into other particles
with a mean lifetime of 2.20 us = 2.20 X 107® s as measured in a
reference frame in which it is at rest. If a muon is moving at 0.990¢
relative to the earth, what will an observer on earth measure its
mean lifetime to be?

IDENTIFY and SET UP: The muon’s lifetime is the time interval
between two events: the production of the muon and its subsequent
decay. Our target variable is the lifetime in your frame of reference
on earth, which we call frame S. We are given the lifetime in a
frame S’ in which the muon is at rest; this is its proper lifetime,
Aty = 220 us. The relative speed of these two frames is

u = 0.990c. We use Eq. (37.6) to relate the lifetimes in the two
frames.

EXECUTE: The muon moves relative to the earth between the two
events, so the two events occur at different positions as measured
in S and the time interval in that frame is Ar (the target variable).
From Eq. (37.6),

AIO

1 — u?/c?

2.20 s

B V1 — (0.990)?

At = = 15.6 us

EVALUATE: Our result predicts that the mean lifetime of the muon
in the earth frame (Af) is about seven times longer than in the
muon’s frame (At#). This prediction has been verified experimen-
tally; indeed, this was the first experimental confirmation of the
time dilation formula, Eq. (37.6).




m Time dilation at airliner speeds

An airplane flies from San Francisco to New York (about 4800 km,
or 4.80 X 10°m) at a steady speed of 300 m/s (about 670 mi/h).
How much time does the trip take, as measured by an observer on
the ground? By an observer in the plane?




m Time dilation at airliner speeds

An airplane flies from San Francisco to New York (about 4800 km,
or 4.80 X 10%m) at a steady speed of 300 m/s (about 670 mi/h).
How much time does the trip take, as measured by an observer on
the ground? By an observer in the plane?

IDENTIFY and SET UP: Here we’re interested in the time interval
between the airplane departing from San Francisco and landing in
New York. The target variables are the time intervals as measured
in the frame of reference of the ground S and in the frame of refer-
ence of the airplane S’.

EXECUTE: As measured in S the two events occur at different posi-
tions (San Francisco and New York), so the time interval measured
by ground observers corresponds to Az in Eq. (37.6). To find it, we
simply divide the distance by the speed # = 300 m/s:

480 X 10°m

At
300 m/s

= 1.60 X 10*s (about 43 hours)
In the airplane’s frame S’, San Francisco and New York passing
under the plane occur at the same point (the position of the plane).

Hence the time interval in the airplane is a proper time, correspon-
ding to Az in Eq. (37.6). We have

2 300 m/s)>
”—2: ( /8) S = 1.00 x 1072
c (3.00 X 10°m/s)

From Eq. (37.6),

Atg = (1.60 X 10*s)V1 — 1.00 x 10712

The square root can’t be evaluated with adequate precision with an
ordinary calculator. But we can approximate it using the binomial
theorem (see Appendix B):

(1= 1.00 X 1072)12 = 1 — (§)(1.00 X 10712) +---

024

The remaining terms are of the order of 1 or smaller and can

be discarded. The approximate result for Az is
Aty = (1.60 X 10%s)(1 — 0.50 X 1071?)

The proper time Az, measured in the airplane, is very slightly less
(by less than one part in 10'?) than the time measured on the ground.

EVALUATE: We don’t notice such effects in everyday life. But
present-day atomic clocks (see Section 1.3) can attain a precision
of about one part in 103, A cesium clock traveling a long distance
in an airliner has been used to measure this effect and thereby ver-
ify Eq. (37.6) even at speeds much less than c.




m Just when is it proper?

Mavis boards a spaceship and then zips past Stanley on earth at a
relative speed of 0.600c. At the instant she passes him, they both
start timers. (a) A short time later Stanley measures that Mavis has
traveled 9.00 X 10’ m beyond him and is passing a space station.
What does Stanley’s timer read as she passes the space station?
What does Mavis’s timer read? (b) Stanley starts to blink just as
Mavis flies past him, and Mavis measures that the blink takes
0.400 s from beginning to end. According to Stanley, what is the
duration of his blink?

IDENTIFY and SET UP: This problem involves time dilation for
two different sets of events measured in Stanley’s frame of refer-
ence (which we call §) and in Mavis’s frame of reference (which
we call S"). The two events of interest in part (a) are when Mavis
passes Stanley and when Mavis passes the space station; the target
variables are the time intervals between these two events as meas-
ured in S and in §’. The two events in part (b) are the start and finish
of Stanley’s blink; the target variable is the time interval between
these two events as measured in S.

EXECUTE: (a) The two events, Mavis passing the earth and Mavis
passing the space station, occur at different positions in Stanley’s
frame but at the same position in Mavis’s frame. Hence Stanley

measures time interval Az, while Mavis measures the proper
time Ary. As measured by Stanley, Mavis moves at 0.600c =
0.600(3.00 X 108 m/s) = 1.80 X 108 m/s and travels 9.00 X
10" m in time Az = (9.00 X 10"m)/(1.80 X 108 m/s) = 0.500s.
From Egq. (37.6), Mavis’s timer reads an elapsed time of

Aty = At V1 — u?/c? = 0.500s V1 — (0.600)> = 0.400 s

(b) It is tempting to answer that Stanley’s blink lasts 0.500 s in
his frame. But this is wrong, because we are now considering a
different pair of events than in part (a). The start and finish of
Stanley’s blink occur at the same point in his frame S but at different
positions in Mavis’s frame S’, so the time interval of 0.400 s that she
measures between these events is equal to Az. The duration of the
blink measured on Stanley’s timer is the proper time Af:

Aty = At V1 — u?/c® = 0.400s V1 — (0.600)> = 0.320s

EVALUATE: This example illustrates the relativity of simultaneity.
In Mavis’s frame she passes the space station at the same instant
that Stanley finishes his blink, 0.400 s after she passed Stanley.
Hence these two events are simultaneous to Mavis in frame S’. But
these two events are not simultaneous to Stanley in his frame S:
According to his timer, he finishes his blink after 0.320 s and
Mavis passes the space station after 0.500 s.




An event that takes time Aft, if it is at rest with
respect to the observer will take longer time if it
is travelling with respect to the observer, i.e.
time seems to run slower (dilated) for an object
which is travelling with respect to the observer!

That guy's
Observer B El\oc/kis slower'J

Observer A




After thinking for a while you will probably conclude
that the above statement does not make sense
because uniform motion is !

To observer B, he is at rest while A is moving, so he
will also see A’'s clock moving slower

That guy's
clock is slower.

Observer B [;4{"
.7% —

Observer A




It seems that the two observers will have opposite
answer to this question! Who is correct?

That guy's
clock is slower. That ,
at guy's
Observer B E’:ﬁis slower'J

\@ Observer A
3




This objection is usually rephrased in the so-

called TWin pGI"GdOX. Suppose there is a pair

of twins on earth. The first one, t;, remains on

earth, while the second one, t,, is sent off ina
rocket ship on a trip to a distant star.







N 30 years later...
éﬂ\ (according to the clock on earth)




IS 1'1 Older' Than T29

The reverse?

Or do they have the same age?




No. I see you
are moving. You
are younger.

You are moving.
You are younger

According to t;, time runs slower in t, since t, is
moving with respect to earth. Therefore, t, is
younger. However, motion is relative, and according
to t,, fime runs slower in t; since the earth is moving
with respect to the rocket! Who is correct?




Oh! I can

The answer to this question lies on the observation that
only motions with uniform velocities are relative. Motions
that involve acceleration are "absolute”. A person cannot
detect uniform motion, but he/she can tell whether
he/she is accelerating or not!




The motion of the two twins is not totally relative to
one another. In order for t, to come back, he has to
decelerate to change direction when returning and
also when landing on earth.




¥

SO0 you are younger. | LY
i “fal y ‘,/v 5 : »
‘ - :‘ ! ‘JV = \: ol v

——

Our above analysis is applicable only in an inertial reference
frame, i.e. only applicable to t;. Therefore, the conclusion of
t; that t, is younger should be the correct one. What t,
should observe is that although the clock of t; seems to run
slower when he is in uniform motion, he will find that when
he is accelerating/decelerating, the clock of t; suddenly run
much, much faster. The net result is that t; is older when t,
returns to earth.




Classwork

31.5 ¢ The negative pion (77 ) is an unstable particle with an
average lifetime of 2.60 X 10~® s (measured in the rest frame of
the pion). (a) If the pion is made to travel at very high speed rela-
tive to a laboratory, its average lifetime is measured in the labora-
tory to be 4.20 X 1077 s. Calculate the speed of the pion
expressed as a fraction of c¢. (b) What distance, measured in the
laboratory, does the pion travel during its average lifetime?

37.11 = Why Are We Bombarded by Muons? Muons are
unstable subatomic particles that decay to electrons with a mean
lifetime of 2.2 wus. They are produced when cosmic rays bombard
the upper atmosphere about 10 km above the earth’s surface, and
they travel very close to the speed of light. The problem we want
to address is why we see any of them at the earth’s surface.
(a) What is the greatest distance a muon could travel during its
2.2-us lifetime? (b) According to your answer in part (a), it would
seem that muons could never make it to the ground. But the 2.2-us
lifetime 18 measured in the frame of the muon, and muons are mov-
ing very fast. At a speed of 0.999¢, what is the mean lifetime of a
muon as measured by an observer at rest on the earth? How far
would the muon travel in this time? Does this result explain why
we find muons in cosmic rays? (c) From the point of view of the
muon, it still lives for only 2.2 us, so how does it make it to the
ground? What is the thickness of the 10 km of atmosphere through
which the muon must travel, as measured by the muon? Is it now
clear how the muon is able to reach the ground?




37.5. (a) IDENTIFY and SET UP: Af, = 2.60x107% s; Ar=4.20%x107" s. In the lab frame the pion is created and
decays at different points, so this time is not the proper time.

2 2
EXECUTE: Ar= A says 1 — ”_2 = (ﬂj
V1—u?/c? c At

2
. -8
u_ 1_(%j - 1—[Mj =0.998; u =0.998¢

420%x107 s

At
u <c, as it mustbe, but u/c is close to unity and the time dilation effects are large.

c

EVALUATE:
(b) IDENTIFY and SET UP: The speed in the laboratory frame is u# =0.998¢; the time measured in this

frame is At, so the distance as measured in this frame 1s d = uAt.

EXECUTE: d =(0.998)(2.998x10° m/s)(4.20x107" s) =126 m




IDENTIFY and SET UP: The 2.2 us lifetime i1s Af, and the observer on earth measures At¢. The

atmosphere i1s moving relative to the muon so in its frame the height of the atmosphere is / and /,
1s 10 km.

EXECUTE: (a) The greatest speed the muon can have is ¢, so the greatest distance it can travel in
221070 s is d = vt =(3.00x10% m/s)(2.2x107° 8) = 660 m = 0.66 km.

22><10‘6

\/ —u?lc? \/ — (0. 999

d = vt =(0.999)(3.00x10% m/s)(4.9%107 s) =15 km

In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime.

(©) [ =Iy\1—u?/c? = (10 km)/1-(0.999)* =0.45 km

(b) At = =49%107s

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime.




Space contraction




Space contraction is a natural consequence of
time dilation if we require consistency in
observations by the observers.

Brother, check
the clock.




Let's consider a field of length L,
according to an observer S at rest
with the field, and a car travelling
with velocity u takes time At = L /u
to cross the field according to
observer S.

[

From my clock,
it takes At to cross.




Now let's us consider what happens
to a clock inside the car. Well, if
you remember time dilation, S will
find that her clock runs faster than
the clock inside the car.

But it is a bit strange
on his clock...
L




According to his clock,
it takes At, to cross.
L

To the clock inside the car, the
time At, take to travel through the
field is




Why the field
seems shorter?

Since the car is travelling with
velocity u with respect to the field,
from his point of view, the field is
moving towards him at a speed of u




Why the field
seems shorter?

The length of the field he observed
will be

which is shorter than L |




This 1s called the phenomenon of

. To an observer, everything
that 1s travelling with velocity u with
respect to him/her will be “shorter” in the
direction of motion when compared with
their length at rest!

BTW, why that gu
seems thinner?

YJ




Length contraction and proper length

* A length measured in the frame in which the body is at

rest (the rest frame of the body) is called a proper
length.

» Thus /,is a proper length in S’, and the length

measured in any other frame moving relative to S is
lesser than /,.

* This effect is called length contraction.

Proper length of object (measured in rest frame)

Speed of second frame
Length

. relative to rest frame

contraction: . _
Lorentz factor relating

Length in second frame of reference ™. the two frames

moving parallel to object’s length Speed of light in vacuum




3ELTICEY R How long is the spaceship?

A spaceship flies past earth at a speed of 0.990c. A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

IDENTIFY and SET UP: This problem is about the nose-to-tail
length of the spaceship as measured on the spaceship and on earth.
This length is along the direction of relative motion (Fig. 37.13),
so there will be length contraction. The spaceship’s 400-m length
is the proper length [, because it is measured in the frame in which
the spaceship is at rest. Our target variable is the length / measured
in the earth frame, relative to which the spaceship is moving at
u = 0.990c.

EXECUTE: From Eq. (37.16), the length in the earth frame is

2
[ =lg\[1 = *5 = (400m) V1 — (0.990)? = 564 m
C

EVALUATE: The spaceship is shorter in a frame in which it is in
motion than in a frame in which it is at rest. To measure the length /,
two earth observers with synchronized clocks could measure the

37.13 Measuring the length of a moving spaceship.

l() = 400 m

(NAANRARRAARAA
O
LAALLLALRLLA]

The two observers on earth (S) must measure x, and x; simultaneously
to obtain the correct length [ = x, — x; in their frame of reference.

positions of the two ends of the spaceship simultaneously in the
earth’s reference frame, as shown in Fig. 37.13. (These two meas-
urements will not appear simultaneous to an observer in the
spaceship.)




37.13 Measuring the length of a moving spaceship.

Iy =400 m

(FRRRTARRARMA
000
WAL

]

The two observers on earth ($) must measure x, and x; simultaneously
to obtain the correct length / = x, — x; in their frame of reference.

m How far apart are the ohservers?

Observers O; and O, in Fig. 37.13 are 56.4 m apart on the earth.
How far apart does the spaceship crew measure them to be?




37.13 Measuring the length of a moving spaceship.

Iy =400 m

""'!‘M"HII'
WAL

The two observers on earth ($) must measure x, and x; simultaneously
to obtain the correct length / = x, — x; in their frame of reference.

m How far apart are the ohservers?

Observers O; and O, in Fig. 37.13 are 56.4 m apart on the earth.
How far apart does the spaceship crew measure them to be?

IDENTIFY and SET UP: In this example the 56.4-m distance is the
proper length [. It represents the length of a ruler that extends
from O; to O, and is at rest in the earth frame in which the
observers are at rest. Our target variable is the length / of this ruler
measured in the spaceship frame, in which the earth and ruler are
moving at u = 0.990c.

EXECUTE: As in Example 37.4, but with [ = 56.4 m,

2
[ =lg[1 =% = (564m) V1 = (0990)” = 7.96 m
c

EVALUATE: This answer does not say that the crew measures their
spaceship to be both 400 m long and 7.96 m long. As measured on
earth, the tail of the spacecraft is at the position of O; at the same
instant that the nose of the spacecraft is at the position of O,.
Hence the length of the spaceship measured on earth equals the
56.4-m distance between O; and O,. But in the spaceship frame O
and O, are only 7.96 m apart, and the nose (which is 400 m in front
of the tail) passes O, before the tail passes O;.




Example of length contraction

« The speed at which electrons
traverse the 3-km beam line of the e 27 2
SLAC National Accelerator
Laboratory is slower than c by less
than 1 cm/s.

As measured in the reference
frame of such an electron, the
beam line (which extends from the
top to the bottom of this
photograph) is only about 15 cm
long!




Classwork

37.13 ° As measured by an observer on the earth, a spacecraft
runway on earth has a length of 3600 m. (a) What is the length of
the runway as measured by a pilot of a spacecraft flying past at a
speed of 4.00 X 107 m/s relative to the earth? (b) An observer on

earth measures the time interval from when the spacecraft is
directly over one end of the runway until it is directly over the
other end. What result does she get? (c¢) The pilot of the spacecraft
measures the time it takes him to travel from one end of the run-
way to the other end. What value does he get?




IDENTIFY: Apply Eq. (37.16).
SET UP: The proper length [, of the runway is its length measured in the earth’s frame. The proper time

At for the time interval for the spacecraft to travel from one end of the runway to the other is the time

interval measured in the frame of the spacecraft.
EXECUTE: (a) [, =3600 m.

2 7 2
, 00x1
=1y, (1= = (3600 m) - 300x10 m/S)" _ 3660 m)(0.991) = 3568 m.
C

(3.00x10% m/s)?

(b) At:l—ozw=9.00x10_5 s.
u 4.00x10" m/s

(©) Al :i:ﬂ:&gle(ﬁ s.
u 4.00x10° m/s

-5
EVALUATE: 1 =0.991, so Eq. (37.8) gives At = 892x10°7s =9.00x10™> 5. The result from length

Y 0.991
contraction is consistent with the result from time dilation.




