PHYSICS (PRE-STAGE LEVEL)

LECTURE 14

Complex Numbers



The Aurora Borealis (Northern Lights) are part of the
Earth’s electromagnetic field.

Although complex numbers may seem to have
few direct links with real-world quantities,
there are areas of application in which the idea
of a complex number is extremely useful. For
example, the strength of an electromagnetic
field, which has both an electric and a
magnetic component, can be described by
using a complex number. Other areas in which
the mathematics of complex numbers is a
valuable tool include signal processing, fluid
dynamics and quantum mechanics.




Part |

You can use real and imaginary numbers.

For the equation ax? + bx + ¢ = 0, the discriminant is b*> — 4ac.
If b2 — 4ac > 0, there are two different real roots.

If b? — 4ac = 0, there are two equal real roots.

If b2 — 4ac < 0, there are no real roots.

In the case b?> — 4ac < 0, the problem is that you reach a situation where you need to find the
square root of a negative number, which is not ‘real’.

To solve this problem, another type of number called an ‘imaginary number’ is used.
The ‘imaginary number’ \(—1) is called i (or sometimes j in electrical engineering), and sums

of real and imaginary numbers, such as 3 + 2i, are known as complex numbers.

A complex number is written in the form a + bi.

T =

|

B You can add and subtract complex humbers.

|

B An imaginary number is a number of the form bi, where b is a real number (b € R).




Example [}

Write /(—36) in terms of i.

J(=36) = /(36 X —1) = V/36,/(—1) = &

This can be written as
Example EJ 2iv7 or (2v/7)i to avoid

confusion with 2v7i.

Write /(—28) in terms of i.

—
J(=28) = /(26 X —1) =V28/(—1) = V&V7,/(=1) = 2/7i or 2V7 or (2V7)i

Example ]

Solve the equation x* + 9 = 0.

2= —9 Note that just as x> = 9

. has two roots +3 and
x=2,/(-9) = £,/(9 X —1) = £V9,/(—1) = %3 -3, x2 = —9 also has two

x = X3i (x = +3i, x = —3i) roots +3i and -3i.




B A complex number is a number of the form a + bi, where a ER and b € R.
B For the complex number a + bi, ais called the real part and b is called the imaginary part.

B The complete set of complex numbers is called C.

Solve the equation x2 + 6x + 25 = 0.

Method 1 (Completing the square)

I Because
(x +3)2%=(x+ 3)(x + 3)
=x2+6x+9

x*+ox=x+37*—-9°
x*+6x+25=(x+3F-9+25=(x+3)?*+16
(x + 32 +16 =0

(x + 3)? = —16

J(=16) = /(16 x —1)




Method 2 (Quadratic formula)

—6 *£/(6° —4X1X25) —6=./(-64)

x: —_— 2

2
J(=GA) = 8

Xx=-3+4i, x=-3—4i

J(=64) = /(64 x —1)
= /64 ,/(-1) = 8i

B In a complex number, the real part and the imaginary part cannot be combined to form a
single term.

B You can add complex numbers by adding the real parts and adding the imaginary parts.

B You can subtract complex numbers by subtracting the real parts and subtracting the
imaginary parts.



Simplify, giving your answer in the form a + bi, wherea € Rand b € R.
a (2 + 5i) + (7 + 3i) b (3 — 4i) + (-5 + 6i) c 2(5 — 8i)
d(1+8i)—(6+1i) e (2—5i)— (5 —11i) f 2+ 3i)—(2-3i)

imaginary parts.

b 3-4)+(-5+6)=(3—-5)+i(—-4+6)=—-2+2i

This is the same as
(5 - 8i) + (5 — 8i)

¢ 2(5-— &) =10 —16i *

d (1+8)—(G6+)=01—-6)+i&—-1)=-5+7

Subtract real parts and
subtract imaginary parts.

e 2-5)—(B-1M)=2-5)+I(-5—(-1) = -3+ 6

The answer has no
real part. This is called

f2+3)-(2-3)=(2-2)+i3—(—3)) = 6

purely imaginary.




You can multiply complex numbers and simplify powers of i.

B You can multiply complex numbers using the same technique as you use for multiplying
brackets in algebra, and you can simplify powers of i.

B Sincei=,(-1),i2=-1

Multiply (2 + 3i) by (4 + 5i)

Multiply the two brackets as you
would in algebra.

. Use the fact that i2 = —1. ‘

Add real parts and add imaginary
parts.

(2 + 3))(4 + Bi) = 2(4 + 5i) + 3i(4 + 5i)
= 8 + 10i + 12i + 15i2
=8+10i+12i — 15 .
= (& — 15) + (10i + 12i)
= —7 + 22i




Example

Express (7 — 4i)? in the form a + bi.

— AT — 4 = AN — AT — A . I Multiply the two brackets as you
(7 — 47 — 4) =7(7 — 4) — 4i(7 — 4i) » el 0 AL o
= 49 — 28i — 28i + 16i?
=49 — 261 — 261 — 16 . ' Use the fact that i? = —1. ‘

= (49 — 16) + (—281 — 28I)

= 20 = 8l Add real parts and add imaginary
parts.




Simplify (2 — 3i)(4 — 5i) (1 + 3i)

First multiply two of the
brackets.

(2 — 3i)(4 — 5i) = 2(4 — 5i) — 3i(4 — 5i)
=8 —10i — 12 + 1512 = & — 10i — 12i — 16 = —7 —22i
(=7 — 22))(1 + 3i) = —=7(1 + 3i) —22i(1 + 3i)«
= —7 — 21i — 22| — 66 = 59 — 43

Then multiply the result by
the third bracket.

Simplify
a il b i* c (2i)°

a P=iXiXi=@Xi=—j:

b i“"=iXiXiXi=PEXit=—-1X—-1=1

¢ (2P =2 X2 X2 X2 X2 =323 XiXiXiXi)
=32(2X 2X i) =32 X —1 X —1 X | = 32

First multiply the 2s (25).




You can find the complex conjugate of a complex number.

B You can write down the complex conjugate of a complex number, and you can divide two
complex numbers by using the complex conjugate of the denominator.

B The complex number a — bi is called the complex conjugate of the complex number a + bi.
B The complex numbers a + bi and a — bi are called a complex conjugate pair.

B The complex conjugate of zis called z*, so if z= a + bi, z = a — bi.

Write down the complex conjugate of
a 2+ 3i b5-2i c V3 +i d1-i/5

a 2— i b 5+ 2i

Just change the sign of the imaginary part
f + to -, or — to +).
c VO —i d 1+ivb (from = to —, or—to +)




Example [}l

Find z + z* and zz*, given that
az=3+5i bz=2-7i cz=22+iV2

a Z =35 — Bi

Z+Z2=(B+5)+(B-5)=(3+3)+I(5-5)=6 Note that z + 7 is real.
s = (@ o el = Bl = Ble — &) Blie — &)
=9 —15i+15i — 25i2=9 + 25 = 34 Note that zz* is real.

b zxk=2+7i

z+Z2=Q2-+@+7)=2+2)+i(-7+7) =4 Note that z + Z* is real.
2zt = (2 = 7i)(2 & 7) = 2(2 + 7)== 7i(2 = 7i)
=4 +14i —14i — 4912 =4 + 49 =53 + Note that zz" is real.

c Z'=2/2 —-iv2
z+ 2= (2V/2 + W2) + (2V2 — W?2)
= (2\/§ + 2\/2) + 1(\/— — «/2_) = 4/2 » Note that z + z* is real.
zz* = (2v2 + W2)(2V2 — iV2)
=2V2(2V2 — W2) + W2(2V2 — iv2)
=8 —4+4—-2=86+2=10" Note that zz* is real.




Simplify (10 + 5i) + (1 + 2i)

The complex conjugate of the
denominator is 1 — 2i. Multiply
numerator and denominator by this.

N o | (OO (= 2
(10) 5 1) o (Al 2r 2 1+2ix1—2i

10 + 5i o 1—2i _ (10 + 50)(1 — 2i)

T+2i “1=2i (1+2)(1— 2]

(10 + Bi)(1 — 2i) =10(1 — 2i) + 5i(1 — 2i)

=10 — 20i + 5i — 10i2

= 20 — 15i

(1 + 2)(1 — 2i) =11 — 2i) + 2i(1 — 2i)
=1—-2+2—42=5

(10 +5i) + (1 +2) =22 Bl=4 -5

Divide each term in the numerator
by 5.




Simplify (5 + 4i) + (2 — 3i)

The complex conjugate of the
denominator is 2 + 3i. Multiply
numerator and denominator by this.

S e Bl e Gl Zae B
(B 4i) =0 (2 = 5i) 2—5ix2+5i

5+4iy2+3 _ (5+4)2+ 30

2-3" 2+3 (2-3)(2+3)

(5 + 4))(2 + 3i) = B(2 + 3i) + 4i(2 + 3i)
=10 + 15i + 8i + 122
= —2 + 23i

(2 — 3)(2 + 3i) = 2(2 + 3i) — 3i(2 + 3i)
=446 —6i—9”2=13

N O e O 2.0 D 2.5
(B 452 =551 S 15+15|

Divide each term in the numerator
by 13.

The division process shown in Examples 12 and 13 is similar to the process used to divide surds.

For surds the denominator is rationalised. For complex numbers the denominator is made real.

B If the roots a and B of a quadratic equation are complex, a and B will always be a complex
conjugate pair.

B If the roots of the equation are a and g, the equationis (x — a)(x — 8) =0
C-a)x-B)=x>-ax—-p+ap=x>—(a+ B)x + ap



Find the quadratic equation that has roots 3 + Si and 3 — 5i.

For this equationa + 8= (3 +5i) + (5 —5i) =6
and af = (3 + 5i)(3 — bi) = 9 + 161 — 16i — 25i¢ = 34
The equation is x* — 6x + 34 = O




You can represent complex numbers on an Argand diagram.

You can represent complex numbers on a diagram, called an Argand diagram.

A real number can be represented as a point on a straight line (a number line, which
has one dimension).

A complex number, having two components (real and imaginary), can be represented as a
point in a plane (two dimensions).

The complex number z = x + iy is represented by the point (x, ¥), where x and y are
Cartesian coordinates.

The Cartesian coordinate diagram used to represent complex numbers is called an Argand
diagram.

The x-axis in the Argand Diagram is called the real axis and the y-axis is called the
imaginary axis.




The complex numbers z; = 2 + 5i, z, = 3 — 4i and z; = — 4 + i are represented by the points A4,
B and C respectively on an Argand diagram. Sketch the Argand diagram.

wNQ Q

Imaginary Y}

(_47 1)

For z; = 2 + 5i, plot (2, 5).
For z, = 3 — 4i, plot (3, —4).
For z; = —4 + i, plot (—4, 1).




Show the complex conjugates z; = 4 + 2i and z* = 4 — 2i on an Argand diagram.

Imaginary ¥/

Note that complex conjugates will always
be placed symmetrically above and below
the real axis.

The complex number z = x + iy can also be represented by the Vectorals, where O is the origin
and P is the point (x, y) on the Argand diagram.



Show the complex numbers z; = 2 + 5i, z; = 3 — 4i and z; = —4 + i on an Argand diagram.

For z; = 2 + 5i, show the vector from (0, 0)
to (2, 5).
Similarly for z, and z,.

If you label the diagram with letters A, B and C, make sure that you show which letter represents
which vector.



The complex numbers z, = 7 + 24i and z, = —2 + 2i are represented by the vectors OA and OB
respectively on an Argand diagram (where O is the origin). Draw the diagram and calculate \OAI
and \OBI

MA@ 29

2

B (-2, 2)%2
0

KRY

|OA| = V72 + 242 = V625 =

0B = /(=22 + 2 = /B = 2/2

B Addition of complex numbers can be represented on the Argand diagram by the addition of
their respective vectors on the diagram.



Example [T

z; =4 +1iand z, = 3 + 3i. Show z;, z, and z; + z, on an Argand diagram.

zitz,=@&+3)+i(l+3) =7+ 4i

yl

Note that the vector for z; + z,
(OQ) is the diagonal of the
parallelogram. This is because

OC= OA + AC = OA + OB.




z;=6 — 2iand z, = — 1 + 4i. Show z,, z, and z; + z, on an Argand diagram.

Note that the vector for z; + z,

(6&) is the diagonal of the
parallelogram. This is because

OC = OA + AC = OA + OB.




z; =2 + Siand z, = 4 + 2i. Show z,, z, and z; — z, on an Argand diagram.

21 — ZZ = 21 + (_’ 22).
The vector for —z, is shown by the
dotted line on the diagram.




You can find the value of r, the modulus of a complex number z, and the value
of 6, the argument of z.

B Consider the complex number 3 + 4i, represented

on an Argand diagram by the point A, or by the 7l

vector OA. Az(3, 4)

The length OA or |6/i|, the magnitude of vector |6/i|,

is found by Pythagoras’ theorem: 14

OAl =37+ 42 =y25 =5 | ]
0 3 X

This number is called the modulus of the
complex number 3 + 4i.




The modulus of the complex number z = x + iy is given by &2 + y2.

The modulus of the complex number z = x + iy is written as r
or |z| or |[x + iy|, so r = yx? + y2.

1z| = yx? + y2.
x + iy| = x? + y2,



B The modulus of any non-zero complex number is positive.

Consider again the complex number
z=3 + 4i.

By convention, angles are measured from the
positive x-axis (or the positive real axis),
anticlockwise being positive.

yl

A3, 4
2

The angle 6 shown on the Argand diagram,
measured from the positive real axis, is found
by trigonometry:

tan 0 =%,

0 = arctan g ~ 0.927 radians

This angle is called the argument of the complex
number 3 + 4i.

KRY



The argument of the complex number z = x + iy is the angle 6 between the positive real
axis and the vector representing z on the Argand diagram.

For the argument 6 of the complex number z = x + iy, tan 6 = %

The argument 6 of any complex number is such that —# < 0< =
(or —180° < 0 < 180°). (This is sometimes referred to as the principal argument).

The argument of a complex number z is written as arg z.

The argument 0 of a complex number is usually given in radians.

It is important to remember that the position of the complex number on the
Argand diagram (the quadrant in which it appears) will determine whether
its argument is positive or negative and whether its argument is acute or
obtuse.

The following examples illustrate this.



Find, to two decimal places, the modulus and argument (in radians) of z = 2 + 7i.

Modulus:

yl\

Argument: tan a =

RY

z| = |2 + 7i| = V22 + 72 = VB3 = 7.28 (2 d.p.)
a = 1.2924...
arg z = 1.29 radians (2 d.p.)

radians

Sketch the Argand
diagram, showing
the position of
the number.

Here z is in the
first quadrant,

so this angle

is the required
argument
(measured
anticlockwise
from the positive
real axis).




Find, to two decimal places, the modulus and argument (in radians) of z = —§ + 2i.

ylk

z(_sl 2’)

z ~ah

Modulus: |z| = |=5 + 2i| = /(=5?) + 22 = V29 = 539 (2 d.p.)
Argument: tan a = % a = 0.5505... radians

arg z = (m — 0.3605) = 2.76 radians (2 d.p.)

Sketch the Argand
diagram, showing
the position of
the number.

Here z is in the
second quadrant,
so the required
argument is

(7w — @) (measured
anticlockwise from
the positive real
axis).




Find, to two decimal places, the modulus and argument (in radians) of z = —4 —i.

ylk
L ; x

1} a 0] X

A /

(=4, —1)
Modulus: |z| = |=4 —i| = {/(=4)%2 + (—1?) = V17 = 412 (2 d.p)
Argument: tan a = % a = 0.2449... radians

arg z = —(m — 0.2449) = —2.90 radians (2 d.p.)

Sketch the Argand
diagram, showing

the position of
the number.

Here z is in the
third quadrant,

so the required
argument is

—(m - a)
(clockwise from the
positive real axis is
negative).




Find, to two decimal places, the modulus and argument (in radians) of z = 3 — 7i.

|

zl(3, —7)

Modulus: |z| = |3 — 7i| = /2% + (=7)? = VB& = 7.62 (2 d.p.

Argument: tan a = 7 a = 1.1659... radians

3
arg z = —1.17 radians (2 d.p.)

Sketch the Argand
diagram, showing
the position of
the number.

Here z is in the
fourth quadrant,
so the required
argument is

—a (clockwise from

the positive real

| axis is negative). '



Find the exact values of the modulus and argument (in radians) of z = —1 +i.

Modulus:

yl

argz=(7r—

Izl = |1+ =/(-1)2+12=v2

Argument: tan a = % o=

RY

Sketch the Argand
diagram, showing
the position of
the number.

Here z is in the
second quadrant,
so the required
argument is

(7 —a) (measured
anticlockwise from
the positive real
axis).




You can find the modulus—-argument form of the complex number z.

B The modulus—argument form of the complex number z=x + iy is
z = r(cos 0 + i sin @) where r is a positive real number and @ is an angle such that
-7 <0< (or —180° < 0 < 180°)

yll

6 I N From the right-angled triangle,
0 x x x =rcos 8and y = rsin 6.

This is correct for a complex number in any of the Argand
diagram quadrants.




For complex numbers z, and z,, |z,z,| = |z,||z,|.
Here is a proof of the above result.

Let |z;| = ry, arg z; = 6, and |z,| = 1,, arg z, = 6, SO
z; = 11(cos 0; + isin 6,) and z, = r,(cos 6, + isin 6,).
Z1Z, = 11(cos 0; + isin 6;) X ry(cos 6, + isin 6,) = rir,(cos 6; + isin 6;)(cos 6, + isin 6,)
= 147,(cos 6, cos 6, — sin 6, sin 6, + i sin 6, cos 6, + i cos 6, sin 6,)
= 111,[(cos 6; cos 6, — sin 6, sin 6,) + i(sin 6; cos 6, + cos 6, sin 6,)]

But (cos 6, cos 6, — sin 0, sin 6,) = cos (6; + 6,) and (sin 6, cos 6, + cos 6; sin 6,) = sin (6; + 6,)
So z,z, = rir,[cos (6, + 6,) + isin (6; + 6,)]

You can see that this gives z,z, in modulus-argument form, with |z,z,| = r; 1.

S0 |21z, = 1,15 = |24]| 2]

(Also, in fact, arg(z,z,) = 6, + 6,)



Example

a Express the numbers z; = 1 + iv3 and z, = —3 — 3i in the form r(cos 6 + isin 6).

b Write down the value of |z,z,|.

ylk

3 o\ Sketch the Argand
' ” diagram, showing

the position of the

numbers.

]
NQ
&)
(==Y
RY

2/(=3,=3)




z; is in the first
Modulus: =|z| =1+ iv/3| =12 + =v4 =2 quadrant, so this

angle is the required

\/_ _ T argument (measured
Argumetit Fanoismes V3 Sis 5 anticlockwise from the
6, = arg z, = % positive real axis).
Modulus: r, = |z| = |3 — 3]
= (=37 + (-3)°
=18 =v/9v2

Z, is in the third
= 3/2 quadrant, so the
required argument is
—(7 — a,) (clockwise

: O _ T
Argument: tan o, = =z = Cr = from the positive real
axis is negative).

S0 z= 2(005% + i sin %)

and z,=3v2 (cos ( SI) + i sin (—%))

Zz|_r1r2 2X5\/__6\/_

Using |zz,| = nir, =




You can solve problems involving complex numbers.

You can solve problems by equating real parts and imaginary parts from each side of an
equation involving complex numbers.

This technique can be used to find the square roots of a complex number.

Iif x; + iy, =x, + iy, thenx; =x,and y, = y,.




Given that 3 + 5i = (a + ib)(1 + i), where a and b are real, find the value of a and the value of b.

(a+ib)(1 +1i) = a(1 +1i) +ib(1 + i)
ata+bi—>b
(a—b) +i(a+ b)
S0 (a—b)tila+ b =3+5i

i a—-b=3-
i atb=5-¢

I Equate the real parts from each side of the
equation.

Equate the imaginary parts from each side
of the equation.

i Solve equations i and ii simultaneously. l

Adding i andiic. 2a2=6
a=4
Substituting into equation i:
4—-—b=23
b=1




Find the square roots of 3 + 4i.

Suppose the square root of 3 + 4iis a + ib,
where a and b are real.
Then (a + ib)? = 3 + 4i

(a+ib)(atib) =23+ 4

a(a + ib) + ib(a + ib) = 3 + 4i

a>+ abi + abi — P* =3 + 4i

(a2 — b?) + 2abi = 3 + 4i

i 2—PFP =53

ii 2a2b =4
From ii: b=i=g
2a a

Substituting into it 2% — iz =3
a
at — 4 = 34°

at— 32> —4=0

(a2 — 4)(a2 + 1) = 0"

a¢=4or g = —1

Equate the real parts from each side
of the equation.

Equate the imaginary parts from
each side of the equation.

Multiply throughout by a?.

This is a quadratic equation in a2



Since a is real, a2 = —1 has no solutions.
Solutions are a = 2 o0r a = —2.
Substituting back into b = %:

Whena =2,b =1

Whena = —2,b = —1

So the square roots are 2 + i and —2 — i
The square roots of 3 + 4i are £(2 + i).




You can solve some types of polynomial equations with real coefficients.

B You know that, if the roots @ and f of a quadratic equation are complex, & and S are always
a complex conjugate pair.

B Given one complex root of a quadratic equation, you can find the equation.

B Complex roots of a polynomial equation with real coefficients occur in conjugate pairs.

7 + 2i is one of the roots of a quadratic equation. Find the equation.

The roots are a conjugate

The other root is 7 — 2i pair.

The equation with roots o and Bis (x — a)(x — B) = O
x—(7+2))(x—(7—2i) =0

X —x(7—20)—x(7+2)+ (7+2)(7—-2))=0

2 — Tx + 2ix — 7x — 2ix + 49 — 14i + 14i — 4i2 = O
¥ —14x+49+4=0

¥ —14x + 53 =0

See Example 14 for another
method.

B An equation of the form ax? + bx? + cx + d = 0 is called a cubic equation, and has three roots.



Example EY]

Show that x = 2 is a solution of the cubic equation x* — 6x? + 21x — 26 = 0.
Hence solve the equation completely.

Forx =2,x° —06x*+21x —26=8—-24+42—-26=0

So x = 2 is a solution of the equation, so x — 2is a factor

of x5 — 6x2 + 21x — 26

x2 — 4x + 13 ]
x — 2)x® — 6x2 + 21x — 26
x2 — 2x°

— 4x% + 21x

— 4x° + &x

15x — 20
13x — 206

O

Use long division (or
another method) to find
the quadratic factor.




B D = — — 2 — =
120 = G me b = 2l = (94 = 2)Ee = 4t 18] = 0 The other two roots are

Solving x> — 4x + 13 =0 found by solving the

quadratic equation.

X2 —4dx=(x—-2¢%—4

Solve by completing the

= e g B = (s = AF =4 1B = (b = 2 R & square. Alternatively, you
could use the quadratic

(x — 2)2 s formula. E

(=22 ==9

xX—2==x(=9) = X3 The quadratic equation has

x=2x5i° complex roots, which must

be a conjugate pair.

=2 ity =2 = 5

So the 3 roots of the equation are 2, 2 + 3i, and 2 — 3i.

Note that, for a cubic equation,
either i all three roots are real,
or ii one root is real and the other two roots form a complex conjugate pair.



Given that —1 is a root of the equation x* — x2 + 3x + k = 0,
a find the value of k,

b find the other two roots of the equation.

If —1is a root,

(=12 = (=1D2+3(-1) + k=0

—1-1-3+k=0

k=5

b —1is a root of the equation, so x + 1is a factor of
x® — x% + 3x + 5.

x2—2x+5 T
x+1)x2—x2+3x+5

x° + x?

— 2x2 + 3x
— 2x% — 2x
b5x + 5

bx + 5
o)

Use long division (or
another method) to find
the quadratic factor.




xX°—x2+3x+5=x+1Dx*—2x+5) =0

The other two roots are

Solving x> —2x +5 =0 * found by solving the

quadratic equation.

x2—2x = (x —1)2%—1

Solve by completing the

x2—2x+5=(x—12—-1+5=(x—12+4 square. Alternatively, you
, could use the quadratic
(x—1)*+4=0 formula.

(x —1)2=—4

x —1= /(%) = £2i

The quadratic equation has

x=1x2i complex roots, which must

be a conjugate pair.

x=1+2i,x=1—2i

So the other two roots of the equation are 1+ 2i and

1= 2i

B An equation of the form ax* + bx3? + cx? + dx + e = 0 is called a quartic equation, and
has four roots.



Given that 3 + i is a root of the quartic equation 2x* — 3x® — 39x% + 120x — 50 = 0, solve the
equation completely.

Complex roots

Another root is 3 — i. * occur in conjugate
pairs.

The equation with roots a and Bis (x — a)(x — B) =0
(x—(B+)x—(3-10)=0

e =0 e i (@ e =0 =0

5r —Gprar g — g — e 8 =& -2 = P =0
=G 2l =0

X2 = ox 10 =0




So x2 — 6x + 10 is a factor of 2x* — 3x° — 39x% + 120x — 50.

b = G = 100 =5 23 °r @) = B = Bpe? — B85 o R0k — 50

Consider 2x*

The only x* term in the expansion is x* X ax? so0 a = 2.

b = Cl 025 v el v ) 5 2 = B S sk iE0p = 1Y)

| |

It is possible
to factorise ‘by
inspection’ by
considering each
term of the quartic
separately.




Consider —3x°

The x° terms in the expansion are x* X bx and —6x X 2x4,

50 bx°> — 12x° = —3x°

b—12 = -5

s0 b = 9.

(x* — 6x +10)(2x* + 9x + ¢) = 2x* — 3x° — 39x* + 120x — 50




You can check this
by considering the

Consider —50 x and x? terms in
the expansion.

The only constant term in the expansion is 10 X ¢, s0 ¢ = —b.
2x* — 3x° — 39x* + 120x — 50 = (x* — 6x + 10)(2x* + 9x — B)

Solving 2x? + 9x — 5 =0
2x —N(x+5)=0

So the roots of 2x* — 3x2 — 39x2 + 120x — 50 = O are
%, —5,3+iand 3 — i

Note that, for a quartic equation,

either i all four roots are real,

or ii two roots are real and the other two roots form a complex
conjugate pair,
or iii two roots form a complex conjugate pair and the other two

roots also form a complex conjugate pair.



Show that x? + 4 is a factor of x* — 2x3 + 21x2 — 8x + 68.
Hence solve the equation x* — 2x3 + 21x? — 8x + 68 = 0.

Using long division:

5 2 Gl
(2 AR — 2 S Pl — B - G
55 + 4x? It is also possible
— OB + 1742 — By to factorise ‘by
inspection’ by
S22 = (&t considering each
term of the quartic
2
17x T 68 separately, as in
17 + 68 Example 33.

o,
So 2o SR 2 e e G SN (i S (e s 2o BN = @)




Eitherx2 + 4 =0o0rx? —2x+17 =0
Solving x* + 4 = 0O

x? = —4
x = +/(4) = /@ X -1 = /4 /(-1 = *2 e dotlaat
Solving x> — 2x +17 =0 Alternatively, you
o o e could use the
X"~ 2x=(x =) 1 quadratic formula.

s Zheasili = (Gl SR = S GG
(x—1D2+16=0

(x — 12 =—16
x — 1= =%/(-16) = x4
x=1=x4

So the roots of x* — 2x° + 21x% — &x + 68 = O are
2i, —2i,1 + 4i and 1 — 4i




Summary of key points

N W N =

S\

10
11

(-1) =iandi®=-1.
An imaginary number is a number of the form bi, where b is a real number (b € R).
A complex number is a number of the form a + bi, where a € R and b € R.
For the complex number a + bi, a is called the real part and b is called the imaginary part.
The complex number z* = a — bi is called the complex conjugate of the complex number
Z=a + bi.
If the roots a and B of a quadratic equation are complex, a and 8 will always be a complex
conjugate pair.
The complex number z = x + iy is represented on an Argand diagram by the point (x, y),
where x and y are Cartesian coordinates.

The complex number z = x + iy can also be represented by the Vectorals, where O is the
origin and P is the point (x, y) on the Argand diagram.

Addition of complex numbers can be represented on the Argand diagram by the addition
of their respective vectors on the diagram.

The modulus of the complex number z = x + iy is given by yx? + y2.

The modulus of the complex number z = x + iy is written as r or ||
or [x + iy|, so

r= a2 +y?
2| = y2 + 52
o + iy = y*? + 2



12 The modulus of any non-zero complex number is positive.
13 The argument arg z of the complex number z = x + iy is the angle 6 between the positive
real axis and the vector representing z on the Argand diagram. y

14 For the argument ¢ of the complex number z = x + iy, tan § = 3.
15 The argument 6 of any complex number is such that —w< < =
(or —180° < 6 =< 180°). (This is sometimes referred to as the principal argument.)
16 The modulus-argument form of the complex number z = x + iy is
z = r(cos 0 + isin ). [ris a positive real number and 6 is an angle such that
—7< 0< 7 (or —180° < 0 < 180°)]
17 For complex numbers z; and z,, |2,z,| = |z;||z,)-
18 Ifx; + iy; = x, + iy,, then x; = x, and y; = y,.
19 An equation of the form ax3 + bx? + cx + d = 0 is called a cubic equation, and has three roots.
20 For a cubic equation, either
a all three roots are real, or
b one root is real and the other two roots form a complex conjugate pair.
21 An equation of the form ax* + bx® + cx? + dx + e = 0 is called a quartic equation, and has
four roots.
22 For a quartic equation, either
a all four roots are real, or
b two roots are real and the other two roots form a complex conjugate pair, or
¢ two roots form a complex conjugate pair and the other two roots also form a complex
conjugate pair.



Part |l

You can express a complex number in the form z = r(cos 0 + i sin 6)

The modulus-argument form of the complex number z = x + iy is

z=r(cosf+isin@) - i It is important for you to remember this formula. ‘

B r, a positive real number, is called the modulus and

where

B 0, an angle such that when —# < 0 < 7, 0 is called the principal argument.

YA From the right-angled triangle,

x =rcos §and andy = rsin 6.

r=|z| = yx? + y?

Y Note that 6, the argument, is not unique. The argument
6 [ of z could also be 0 + 27, 0 = 44, etc.

To avoid duplication of 6, we usually quote 6 in the range
—a < 0 < 7 and refer to it as the principal argument,
‘arg’, ie. 0 = arg z.

2(x, y)

z = r(cos 0 + i sin 6) is correct for a complex number in any of the Argand diagram quadrants.



Express z = —v3 + i in the form r(cos 6 + i sin 6), where —7 < 6 < .

1 arg z
. Y

V3 O x

Sketch the Argand diagram, showing
the position of the number.

Here z is in the second quadrant so the
required argument is (7 — a).

Find r and 6.

= — el (L - i B
0 =argz=m— tan (\/5) TG
B L DT
= 2
Therefore, z 2(005 5 i sin 5 )

i Apply z = r(cos 6 + i sin 6) ‘



Express z = —1 — i in the form r(cos 6 + i sin 6), where —7 < 6 < 7.

Sketch the Argand diagram, showing
the position of the number.

Here z is in the third quadrant so the
required argument is —7 + a.

2(-1, -1)

F=y/(—12+ (12 =+2

0=argz=—7r+tan‘1(1)= = or

Find r and 6.

Apply z = r(cos 6 + i sin 6)

Therefore, z = /2 (coe (—5777) + i sin




You can express a complex number in the form z = re'é.

_ 02, 0 Chrem
cos =1 o +4! il s T -+ o0 o @
) 3 B 03 05 B 07 (_l)r 02r+1
sin § = 6 31 +- SRl y T -+ TESVE + ...... ©))

Also, for x € !, the series expansion of e* is
_ x2  x xt X
ex—1+x+z+§+a+§+ ...... += + ...

It can be proved that the series expansion for e* is also true if x is replaced by a complex number.
If you replace x in e* by i6 the series expansion becomes

i0)? , (i0)® L (6)* K (i6)> , (i6)°

2 + 3 + a0 + 3| + gl
202 PR 6, 1965 | 1565
o T3 T T e
2 i 6 65 ¢

=1+16—ﬁ—j+ﬂ+§—a+ ......

_ 6>, 64 65 (a0 6,6

el =1+1i6 +

+

= 1+i0+




By comparing this series expansion with those of ® and @ you can write e'’ as

o 04 isinge This formula is known as Euler’s relation.
SH ST It is important for you to remember this result.

You can now use Euler’s relation to rewrite z = r(cos 6 + i sin 6) as

7 = reif This is the exponential form of the complex
number z.

where r = |z| and 0 = arg z.




Express z = 2 — 3i in the form rel%, where —7 < 6 < .

YA

2 ~
oNa/ L= x
/argzi

'3

22, —3)

r=4(2)?2+ (-3)2 =13

6=argz= —tan™ (%) = —0.96 (2d.p)

Therefore, z = V13 e 0981,

Sketch the Argand diagram, showing the
position of the number.

Here z is in the fourth quadrant so the
required argument is —a.

i Find rand 6. ‘

l Apply z = re'. ‘

cos (—6) = cos 6

and

sin (—60) = —sin 6




Express
a Z=\/_2_(COS£+ isinﬂ) bz=5 (cosﬂ—isinlr)intheformre“’, where —7 < 6 < m.

10 10 8 8

a Z=\/§(6051+i5in£)

10 10 Compare with r(cos 6 + i sin 6).

p— :_71
So, r =2 and 6 L

Therefore, z = +/2 €10 ¢




b z=5(cosg—i5ing)

z= 5((;05 (—g) + i sin (—g))

So,r=5and 0 = —

®[

Apply cos (—6) = cos 6 and sin (—6) = —sin 6.

Compare with r(cos 6 + i sin ).

Therefore, z = 58_% .

Apply z = re’,




Example B

3mi
Express z = V2 e 4 in the form x + iy, wherex €[ Jandy €[ |.

So, r = V2 and 0:5777'

= S0 0 57
z—\/§(0057+|9mT)

Apply cos 37 = — L and sin 37 = 1

4 V2 4 72

= R .
=2 \/_2_+|\/§

Therefore,z = —1 + i «




ENTIY 6 |

23mi
Express z = 2e 5 in the form r(cos 6 + i sin ), where —7 < 0 < .

23m _
z=2e° ° i Compare with re®. l

- 2277' — 1557T — 5577 * i Continue to subtract 27 from G until 27 < 6 < . l
_ AT 577' = —
z=+v2 cosg-i- i 5in =— = Apply z = r(cos 6 + i sin 6).




Example

Use €'’ = cos 6 + i sin § to show that cos 6 = 2(e'’ + ™).

e’ = cos 0+ isin O ®

e™% = ¢7% = cos (—0) + i sin (—0)
So, e " = cos § — i sin 0 @)
Adding ® and @ gives Use cos(—6) = cos 6 and sin(—6) = —sin 6.

e+ e %=2cos5 0. i Divide both sides by 2. '
1

Hence, cos 6 = 1 (¢° + ¢7%), as required.




You need to know how multiplying and dividing affects both the modulus and
argument of the resulting complex number.

sin (6, = 6,) =sin 6, cos 6, = cos 6;sin 6, @
cos (6, = 6,) =cos 6, cos 6, ¥ sin 6, sinh, @
cos2 6, +sin? 6, = 1 (6)

Multiplying complex numbers z; and z,
If z; = ry(cos 6; + isin 6,) and z, = r,(cos 6, + isin 6,), then

Z1Z, = ry(cos 6; + isin 6;) X r,(cos 6, + i sin 6,)
= 1,1,(cos 6; + i sin 6;)(cos 6, + i sin 6,)
= r,1,(cos 6, cos 6, + i cos 6, sin 6, + isin 6, cos 6, + i% sin 6, sin 6,)
= 111,((cos 6, cos 6, — sin 6; sin 6,) + i(sin 6, cos 6, + cos 6; sin 6,))
= r,1,((cos 6, cos 6, — sin 6, sin 6,) + i(sin 6, cos 6, + cos 6, sin 6,))
= ri1,(cos(6; + 6,) + isin(6; + 6,)), using identities @ and ().

Therefore the complex number z,z, = ryr,(cos(6; + 6,) + isin(6; + 6,)) is in a modulus-
argument form and has modulus r;r, and argument 6, + 6,.




Also, if z; = re'® and z, = r,e'% then

_ i0 i6
Z1Zy = (rle 1)(Tze 2)
= 1,1yeifi it
= 1,7,€l0+ 0

i(6,

Therefore the complex number z,z, = r;7,e%* % is in an exponential form and has modulus

1, and argument 6; + 0,.
Dividing a complex number z, by a complex number z,
If z; = ry(cos 6, + isin 6;) and z, = r,(cos 6, + i sin 6,), then

z, r11(cos 6; +1isin 6,)
Z2  r1y(cos 6, + isin 6,)

r1(cos 6, + i sin 6,)
r,(cos 6, + isin 6,)

ri(cos 0; +isin 6;) _ (cos 6, — isin 6,)
r,(cos 0, +isin 6,)  (cos 6, + isin 6,)

r,(cos 60, cos 6, — i cos 0, sin 6, + i sin 6, cos 6, — i sin 0 sin 6,)
r,(cos 6, cos 6, — i cos 6, sin 6, + i sin 6, cos 6, — i% sin 6, sin 6,)

r,((cos 6, cos 6, + sin 6, sin 6,) + i(sin 6; cos 8, — cos 6, sin 6,))
r,(cos? 6, + sin? 6,)

(cos(6; — 6,) + isin(6, — 6,)), using identities @, & and (®.

r
T



Therefore the complex number % = ;—; (cos (6, — 6,) + isin(6; — 6,) is in modulus-argument

r
form and has modulus r—; and argument 6, — 0,.

i6,

Also, if z, = re'% and z, = r,e'® then

z, et
r,el®

_n pibia=it

)

_nh
n

iGl o 102

S

_ ; oi(6: = 6)
2
I

2 Toain spiass :
Therefore the complex number Z—; = L ¢l®:~% j5 in an exponential form and has modulus )

)
and argument 6, = 6,.

In summary, you need to learn and apply the following results for complex numbers z, and z,:

B [z:7)] = |z||z] When you multiply z; by z,

e you multiply their moduli and

B arg (z,2,) = arg (z;) + arg (2,) e add their arguments as shown.
22| |z When you divide z, by z,

e you divide their moduli and
e subtract their arguments as shown.

W arg (j—;) = arg (z) — arg (2)




5_’”' o s 5_’]7' 1 s s l . .
Express 3(cos 1 T isin 12) X 4((:05 75 T1sin 12) in the form x + iy.

57 , . .. 5w T . . T
5(005 2 + i sin ﬁ) X 4(005 2 + i sin ﬁ)

_ S5Sm , m oo O . T Apply the result,
3(4) (605( 12 + 12) w 51”( 1 T 12)) Z21Z; = nr(cos(6;, + 6,) + isin(6; + 6,)).

=12 (0 +i(1)) « Apply cos g =0andsinZ =1.
= 12i




Express 2(cos 15 + isin E) X 3(cos 2T _ i sin 2—77) in the form x + iy.

S S

2w 21
Z, = 3(cos — isin )
2T _ 21 5 5
2(005 15 T i sin %) X 5(605 5 — isin ?) must be written in the form
Z, = ry(cos 6, + isin 6,).
27 27T
= — -+ — | X + =
2(005 5 i sin 15) 5(005( 5 ) i sin ( 5 ))
_ m™_ 2T m _2m)) Use cos(—6) = cos 6 and
= 2(9) (005 (15 5 ) T ieln (15 5 )) l Sin(=8) = —sin 6. l
_ T . T
- 6(605 (_5) T isin (_5)) Apply the result,
2122 = r-| rz(COS(01 ar 02)
:6(1+i(_@)) +isin(6, + 6,)).
2 2

Apply cos (—%T) = 1Eand

m _ V3
)_

sin ( 3 >




x/E(cos T +isin l)

Express 512 512 in the form x + iy.
Z(c:os 27 + isin —77)
6 6
T T
\/f(cosﬁ = ifoln ﬁ)
2(606 %7—7 + i sin %71)
Y By applying the result,
= V2 T _DT\ 4 igin(T —om Z_nh _ e
5 co% (12 6)+15m(12 6)) z—z—rz(cos(e1 6,) + isin(6; — 6,)).
= Y2 (005 (~3T) + isin (-2T)).
N2 (I
~Z ‘"ﬁ“(“z‘)) ApPly cos -
. 3
:—l—ll Sln(_Tﬂ.)=_
22




Summary of key points

1 A complex number, z, can be expressed in any one of three forms:
o Z=Xx=1y
e z=r(cos 6+ isin 6)

o z=re!

wherer = |z| = &2 + y2 and 0 = arg z.

2 For complex numbers z; = ry(cos 0; + isin 6;) and z, = r,(cos 6, + i sin 6,),

o ZIZZ — Tll‘z(COS (01 =F 02) -F iSiIl (91 ala 02))

Z, T ..
° Z—;=r—;(cos (0, — 6,) +1isin (6, + 6,))

o [2125] = |z1]|zy]
o arg(zz,)=arg(z )+ arg(z,)

_ =
|2,

o arg(s, /7)) = arg(z,) - arg(z,)

A
Z,
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Applications to Physics

Alternating Current (AC)

Use of Complex Impedance

functions. The basic parts of the strategy are as follows:

The handling of the impedance of an AC circuit with multiple components quickly becomes
unmanageable if sines and cosines are used to represent the voltages and currents. A
mathematical construct which eases the difficulty is the use of complex exponential

imaginary numbers.

Polar form
Math relationship underlying the jor _ . . s Euler of
technique e’ = coswt + Jsinwt relation  |complex
number
The real part of a complex _ Jjwi
exponential function can be used V= Vm Cos i represent V= Vmel
to represent an AC voltage or =1 cos(wt— ¢) by = = e}‘lwt—cﬁl
Cllrrent. m . m
The impedance can then be 7= Vm —jo _ R+ ;X |lmpedance [Phasor
expressed as a complex =—€e""=RT] g Ta N e
exponential. m R e
The impedance of the individual . Bssre
circuit elements can then be R ~—J  joL RL and RC mlr)a_llel
expressed as pure real or oC combinations Jrﬁm

Index

AC
circuit
concepts




Applications to Physics

Alternating Current (AC)

Complex Impedance for RL and RC

Imaginary

e = fail

Using complex impedance is an
important technique for handling
multi-component AC circuits. If a
complex plane is used with
resistance along the real axis then
the reactances of the capacitor and
inductor are treated as imaginary Index
numbers. For series combinations of
. components such as RL and RC AC

: combinations, the component values | circuit
. are added as if they were concepts
i components of a vector. Shown here
 is the cartesian form of the complex
. impedance. They can also be written
. in polar form. Impedances in this

. form can be used as building blocks
+ for calculating the impedances of

i combination circuits like the RLC

i parallel circuit.




Applications to Physics

Alternating Current (AC)

Complex Impedance for RL and RC
This depicts the phasor diagrams and complex impedance expressions for RL and RC circuits
in polar form. They can also be expressed in cartesian form.
Imaginary Cartesianform:  Z, = R, + joL
A
R" Polar form: Z,‘ = |Z,' e/¢
L .
j wL where - 2 272
L ¢ |Zl,|_\]RL+wL
i L
Imaglnary Cartesian form: Z - R = L
R. wC
' — R
ea Polar form: Z(‘. = |Z(.|e
where -
1Z.|=  |RE H—
¢=tan" —
wCR,.
Impedance |Polar form of complex number ‘

=
@
>4

B

circuit
concepts




Applications to Physics

Quantum Mechanics

Schroedinger Equation

The Schroedinger equation plays the role of Newton's laws and conservation of energy in
classical mechanics - i.e., it predicts the future behavior of a dynamic system. It is a wave
equation in terms of the wavefunction which predicts analytically and precisely the
probability of events or outcome. The detailed outcome is not strictly determined, but given a
large number of events, the Schroedinger equation will predict the distribution of results.

Kinetic = Potential _
+ =
Energy ~ Energy

Classical 1 1 : :
2 2 Harmonic oscillator
i —mv< + —Kkx =
g:gf:;v ationot 2 2 example.
Newton's Laws F =ma = -kx
Quantum 5 The energy becomes
Conservation of l 1 Tkx2_ the Hamiltonian operator
Energy ﬁ «— Wavefunction
Schrodinger
Equation HLP E\P - .
. Energy "eigenvalue
In making the h o for the system
transition to P > Tg X » X .
e sl o The form of the Hamiltonian
fak);s',iz ,‘ﬁ:ﬁ‘o,es -~ 9 1 x2 operator for a quantum
"operators". 2m ox> 2 harmonic oscillator.

The kinetic and potential energies are transformed into the Hamiltonian which acts upon the
wavefunction to generate the evolution of the wavefunction in time and space. The
Schroedinger equation gives the quantized energies of the system and gives the form of the
wavefunction so that other properties may be calculated.

Index

Schroedinger
equation
concepts




Physicists/Mathematicians

Leonhard Euler (1707-1783)

Swiss mathematician. Euler’s name is
attached to every branch of mathematics. His
prolific writing was not at all slowed down by
his total blindness for the last seventeen years
of his life. He could recall and mentally
calculate long and complicated problems.
Fuler did not cease to calculate until he
ceased to live — that day he was still talking
about the calculation of the orbit of Uranus.
Among the many new symbols FEuler
introduced were the signs:

ifor\/—_l

E for summation

f(zx) for function

e for the base of natural logarithm



References
B

= https://www.pearsonschoolsandfecolleges.co.uk /Secondary /Mathematics/16plus/
EdexcelModularMathematicsfor ASand ALevel /Resources/FurtherPureMathematics1/
FP1 Chapter 1.pdf

» https://www.pearsonschoolsandfecolleges.co.uk /Secondary /Mathematics/16plus/
EdexcelModularMathematicsforASand ALevel /Resources/
FurtherPureMathematics2/03%20Ch %2003 _018-065.pdf

» (C.K. Chan, O.K. Fok, and L.S. Ko, Additional Mathematics—A Guided Course: Vol. 8
(Canotta, Hong Kong, 2000).



