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(6.5) Physical Applications

Mass and Density ’}

Figure 6.48 We can calculate the mass of a thin rod oriented
along the x-axis by integrating its density function.
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Figure 6.49 A representative segment of the rod.

Download for free at http://openstax.org/
details/books/calculus-volume-1.



(6.5) Physical Applications

The mass m; of the segment of the rod from x;_ ; to x; is approximated by
m; & p(xF )(x;—x;_1) = p(x¥ )Ax.

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:

m = i m; =~ i px¥ )Ax.
i=1 i=1

This is a Riemann sum. Taking the limit as » — co, we get an expression for the exact mass of the rod:

n b
m=lim_ -21 pxt )Ax = [ plyax.
1=

Download for free at http://openstax.org/
details/books/calculus-volume-1.



(6.5) Physical Applications

Theorem 6.7: Mass-Density Formula of a One-Dimensional Object

Given a thin rod oriented along the x-axis over the interval [a, b], let p(x) denote a linear density function giving
the density of the rod at a point x in the interval. Then the mass of the rod is given by

b 6.10
m= /a p(x)dx. ( )

Download for free at http://openstax.org/
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(6.5) Physical Applications

Example 6.23

Calculating Mass from Linear Density

Consider a thin rod oriented on the x-axis over the interval [#/2, z]. If the density of the rod is given by

p(x) = sin x, what is the mass of the rod?

Solution
Applying Equation 6.10 directly, we have

b n
m=/ap(x)dx=/ sinx dx = —cos x|, = 1.

/2

Download for free at http://openstax.org/
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(6.5) Physical Applications
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Figure 6.50 (a) A thin disk in the xy-plane. (b) A representative washer.
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(6.5) Physical Applications

We now approximate the density and area of the washer to calculate an approximate mass, m;. Note that the area of the
washer is given by
2 2
A; =alx)”—alx;_q)
- 2 2
= ﬂ(.xi =+ X;— 1)(xi —X;_ 1)
= a(x; + x; _ 1)Ax.

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we
use x¥ =~ (x;+ x;_1)/2 to approximate the average radius of the washer. We obtain

A;=r(x;+x; _ )Ax = 2nxt Ax.

Download for free at http://openstax.org/
details/books/calculus-volume-1.



(6.5) Physical Applications

Using p(x¥ ) to approximate the density of the washer, we approximate the mass of the washer by
m; ~ 2rnx¥ p(x¥ )Ax.

Adding up the masses of the washers, we see the mass m of the entire disk is approximated by
n n
m = Z m; & z 2rxt p(x¥ )Ax.
i=1 i=1

We again recognize this as a Riemann sum, and take the limit as n — oco. This gives us

n

r
m = nli)moo' 2rxt p(x¥ )Ax = f . 2rnxp(x)dx.

1 =

Download for free at http://openstax.org/
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(6.5) Physical Applications

Theorem 6.8: Mass-Density Formula of a Circular Object

Let p(x) be an integrable function representing the radial density of a disk of radius . Then the mass of the disk is
given by

m = / 0r27txp(x)dx. (e

Download for free at http://openstax.org/
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(6.5) Physical Applications

Example 6.24

Calculating Mass from Radial Density

Let p(x) = vx represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution
Applying the formula, we find

r
m = /0 2rxp(x)dx

4 4
= / 2rxVvxdx = 2w f x iy
0 0

4
_n 2,52 _4m _ 128x
= 27277, = 4232) = 1282

Download for free at http://openstax.org/
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(6.5) Physical Applications

Work Done by a Force

Suppose we have a variable force F(x) that moves an object in a positive direction along the x-axis from point a to point
b. To calculate the work done, we partition the interval [a, b] and estimate the work done over each subinterval. So, for
i=0,1,2,...,n, let P={x;} bearegular partition of the interval [a, ], and for i =1, 2,..., n, choose an arbitrary
point x¥* € [x;_q, x;]. To calculate the work done to move an object from point x; _; to point x;, we assume the
force is roughly constant over the interval, and use F(x} ) to approximate the force. The work done over the interval

[x;_ 1, x;], then, is given by

W; = F(x¥ )(x; —x; _ 1) = F(x¥ )Ax.

Download for free at http://openstax.org/ 12
details/books/calculus-volume-1.



(6.5) Physical Applications

W, R F(x¥ )(x; —x; _1) = F(x¥ )Ax.

Therefore, the work done over the interval |a, b| is approximately

W= W~ zn: F(x* )Ax.

i=1 i=1

Taking the limit of this expression as n — oo gives us the exact value for work:

n b
W= lim Y Fi)Ax= [ Fxdx.
=1 a

n— 0o,
I

Download for free at http://openstax.org/
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(6.5) Physical Applications

Definition

If a variable force F(x) moves an object in a positive direction along the x-axis from point a to point b, then the work

done on the object is

b 6.12
W= /a F(x)dx. (6-12)

Note that if F is constant, the integral evaluates to F'- (b — a) = F -d, which is the formula we stated at the beginning of

. .
thic cartinn

Download for free at http://openstax.org/

details/books/calculus-volume-1. 14



(6.5) Physmal Applications
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Figure 6.51 A block attached to a horizontal spring at

equilibrium, compressed, and elongated.
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(6.5) Physical Applications

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by
F(x) = kx, for some constant k. The value of k depends on the physical characteristics of the spring. The constant k

is called the spring constant and is always positive. We can use this information to calculate the work done to compress or
elongate a spring, as shown in the following example.

Example 6.25

The Work Required to Stretch or Compress a Spring

Suppose it takes a force of 10 N (in the negative direction) to compress a spring 0.2 m from the equilibrium
position. How much work is done to stretch the spring 0.5 m from the equilibrium position?

Download for free at http://openstax.org/

details/books/calculus-volume-1. 16



(6.5) Physical Applications

Solution
First find the spring constant, k. When x = —0.2, we know F(x) = —10, so

F(x) = kx
—10 = k(-0.2)
k = 50

and F(x) = 50x. Then, to calculate work, we integrate the force function, obtaining

b 0.5 0.5
W=/ Fdx= fo 50x dx = 25x2|,” = 6.25.

The work done to stretch the spring is 6.25 J.

Download for free at http://openstax.org/

details/books/calculus-volume-1. L



(6.5) Physical Applications

Work Done in Pumping

X

Figure 6.52 How much work is needed to empty a tank

partially filled with water?

Download for free at http://openstax.org/
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(6.5) Physical Applications

Using this coordinate system, the water extends from x = 2 to x = 10. Therefore, we partition the interval [2, 10] and
look at the work required to lift each individual “layer” of water. So, for i =0, 1, 2,..., n, let P = {x;} be a regular

partition of the interval [2, 10], and for i=1, 2,..., n, choose an arbitrary point x¥ € [x;_q, x;]. Figure 6.53

shows a representative layer.

l _____ X.
Ax

[

Figure 6.53 A representative layer of water.

Download for free at http://openstax.org/
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(6.5) Physical Applications

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so
it is equal to the weight of the water. Given that the weight-density of water is 9800 N/m?3, or 62.4 Ib/ft, calculating the

volume of each layer gives us the weight. In this case, we have
V = 7(4)* Ax = 167Ax.
Then, the force needed to lift each layer is

F =9800-16rAx = 156,800z Ax.

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the
next example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use x¥ as

an approximation of the distance the layer must be lifted. Then the work to lift the ith layer of water W; is approximately

W; =~ 156,8007zx’}< Ax.

Download for free at http://openstax.org/

details/books/calculus-volume-1. 20



(6.5) Physical Applications

Adding the work for each layer, we see the approximate work to empty the tank is given by
n n
W= Y W;~ Y 156,800zx Ax.
i=1 i=1
This is a Riemann sum, so taking the limitas n — oo, we get

n
W =n11>m00_21 156,800zx} Ax
I =

10

= 156,8007 f2 xdx

10

2
= 156,8007:[%] ‘2 = 7,526,400z ~ 23,644,883.

The work required to empty the tank is approximately 23,650,000 J.

Download for free at http://openstax.org/

details/books/calculus-volume-1. 21



(6.5) Physical Applications

Example 6.26

A Pumping Problem with a Noncylindrical Tank

Assume a tank in the shape of an inverted cone, with height 12 ft and base radius 4 ft. The tank is full to start
with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is 4
ft. How much work is required to pump out that amount of water?

Solution

The tank is depicted in Figure 6.54. As we did in the example with the cylindrical tank, we orient the x-axis
vertically, with the origin at the top of the tank and the downward direction being positive (step 1).

Download for free at http://openstax.org/

details/books/calculus-volume-1. 22



(6.5) Physical Applications

.l

Figure 6.54 A water tank in the shape of an inverted cone.

Download for free at http://openstax.org/
details/books/calculus-volume-1.
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(6.5) Physical Applications

- y x=0
X

12 — x*

(a) (b)
Figure 6.55 Using similar triangles to express the radius of a disk of water.
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details/books/calculus-volume-1. 24



(6.5) Physical Applications

From properties of similar triangles, we have

Then the volume of the disk is

_ i _ 4 _1
12— 12 3
3r; = 12—x¥
12 — x¥
5=
!
= 4-— 3
xe E
V,= n(4—#) Ax (step 2).

Download for free at http://openstax.org/
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(6.5) Physical Applications

The weight-density of water is 62.4 Ib/ft3, so the force needed to lift each layer is approximately
2
F;~ 62.47:(4 — L) Ax (step 3).

¥

3

Based on the diagram, the distance the water must be lifted is approximately x¥ feet (step 4), so the approximate

work needed to lift the layer is

N

W; ~ 62.4mx% (4 - #) Ax (step 5).

Summing the work required to lift all the layers, we get an approximate value of the total work:
n n o 2
W = ,-;1 W; ~ i; 62.4mx* (4 - #) Ax (step 6).

Download for free at http://openstax.org/

details/books/calculus-volume-1. 26



(6.5) Physical Applications

Taking the limit as n — oo, we obtain

n

W = lim E,
n— 00, 1

—

= f0862.4ﬂx

= 62.47 /0 N

= 62.4ﬂ[8x2

Xz -
62.47mx* ( é ) Ax
2
(4 _ X
\4 3) dx
{ SXax _ : 8x% | x°
16- 8+ )d 624n/0(16x— 4 X i
4 8
83 N §6]‘ 10,649.67 ~ 33,456.7.

It takes approximately 33,450 ft-lb of work to empty the tank to the desired level.

Download for free at http://openstax.org/
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(6.5) Physical Applications

Hydrostatic Force and Pressure

Let’s begin with the simple case of a plate of area A submerged horizontally in water at a depth s (Figure 6.56). Then, the
force exerted on the plate is simply the weight of the water above it, which is given by F' = pAs, where p is the weight

density of water (weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a
submerged object—we divide the force by the area. So the pressure is p = F/A = ps.

Figure 6.56 A plate submerged horizontally in water.

Download for free at http://openstax.org/ 58
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(6.5) Physical Applications

ofvw*)
i ﬁ

Figure 6.57 A thin plate submerged vertically in water.

Download for free at http://openstax.org/
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(6.5) Physical Applications

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth,
s(x¥ ). We then have

F; = pAs = p|w(x¥ )Ax]s(x¥ ).

Adding the forces, we get an estimate for the force on the plate:

Fx i F;= zn: plwx¥ )Ax]s(x¥ ).

i=1 i=1

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

n b 6.13
F = nli)moo Z ,o[w(x’l?< )Ax}y(x;l< ) = / pw(x)s(x)dx. ( )
i=1 a

Download for free at http://openstax.org/

. 30
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(6.5) Physical Applications

Finding Hydrostatic Force

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the
force on one end of the trough if the trough is full of water.

Solution

[

o

=
Y

5 ft

X

(b)
Figure 6.58 (a) A water trough with a triangular cross-section. (b)
Dimensions of one end of the water trough.

Download for free at http://openstax.org/ 31
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(6.5) Physical Applications

Select a frame of reference with the x-axis oriented vertically and the downward direction being positive. Select
the top of the trough as the point corresponding to x = 0 (step 1). The depth function, then, is s(x) = x. Using

similar triangles, we see that w(x) = 8 — (8/3)x (step 2). Now, the weight density of water is 62.4 1b/ft3 (step
3), so applying Equation 6.13, we obtain

F = _/a bpw(x)s(x)dx
= /0362.4(8 -8 hdr =624 fo 3(8x - 8:%)ax
3
= 624]422 - 83|, = 7488

The water exerts a force of 748.8 1b on the end of the trough (step 4).

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

Center of Mass and Moments

(@)
- d1 - d2 -
my ms
(b)

Figure 6.62 (a) A thin rod rests on a fulcrum. (b) Masses are
placed on the rod.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

my my
- ® | @ - X
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Figure 6.63 The center of mass x is the balance point of
the system.
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(6.6) Moments and Centers of Mass

The expression in the numerator, m x| + m, x,, is called the first moment of the system with respect to the origin. If the

context is clear, we often drop the word first and just refer to this expression as the moment of the system. The expression
in the denominator, m + m,, is the total mass of the system. Thus, the center of mass of the system is the point at which

the total mass of the system could be concentrated without changing the moment.

This idea is not limited just to two point masses. In general, if n masses, m{, m,,..., my, are placed on a number line at
points xi, X5,..., X,, respectively, then the center of mass of the system is given by
n
Z mixi
¥ =i=1

Zmi

1

i=1
7

1

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

Theorem 6.9: Center of Mass of Objects on a Line

Let my, m,,..., m, be point masses placed on a number line at points xj, x5,..., X;, respectively, and let

n
m= Z m; denote the total mass of the system. Then, the moment of the system with respect to the origin is given
i=1

by
n (6.14)
M = Z m;Xx;
=1
and the center of mass of the system is given by
= _M 6.15
X = me ( )
Download for free at http://openstax.org/ 37

details/books/calculus-volume-1.



(6.6) Moments and Centers of Mass

Example 6.29

Finding the Center of Mass of Objects along a Line

Suppose four point masses are placed on a number line as follows:

m; =30kg,placedatx; = -2m  m, = 5Skg, placed atx, =3 m
ms = 10kg, placed at x5 = 6 m my4 = 15 kg, placed at x, = -3 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

Solution

First, we need to calculate the moment of the system:

4
M = Z mx;

i=1
= —60+ 15 + 60 — 45 = -30.

Now, to find the center of mass, we need the total mass of the system:

4

i=1
=30+5+10+15 = 60kg.

Then we have
M _ =30 _

X === = —

1
m - 60 2

The center of mass is located 1/2 m to the left of the origin.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass
yi

X1 [ *m

x
p—
xV

Figure 6.64 Point mass m is located at point (x, y{) in

the plane.
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(6.6) Moments and Centers of Mass

Theorem 6.10: Center of Mass of Objects in a Plane

Let my, m,,..., my be point masses located in the xy-plane at points (x{, y1), (X5, ¥9),..., (X5, Yn), respectively,

n
and let m = Z m; denote the total mass of the system. Then the moments M, and M, of the system with respect
1= 1

to the x- and y-axes, respectively, are given by

& 2 (6.16)
Mx = Z m;y; and My = z m;x;.
Also, the coordinates of the center of mass (x, y ) of the system are
- M _ 6.17
X = Wy and y = % (6.17)
Download for free at http://openstax.org/ 41
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(6.6) Moments and Centers of Mass

Example 6.30

Finding the Center of Mass of Objects in a Plane

Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):
mq = 2Kkg, placed at (—1, 3),
m, = 6kg, placed at (1, 1),
m4 = 4kg, placed at (2, —2).

Find the center of mass of the system.

Download for free at http://openstax.org/ 42
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(6.6) Moments and Centers of Mass

Solution

First we calculate the total mass of the system:
3
m= ) m=2+6+4=12kg.
=1
Next we find the moments with respect to the x- and y-axes:

3
My= Z mlxl=—2+6+8= 12,
i=1

3
My= ) my;,=6+6—-8=4.
=1

Then we have

=1land y =Ag1x=f42=%.

M
e . T
Y ETm T 12

The center of mass of the system is (1, 1/3), in meters.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

Center of Mass of Thin Plates

Theorem 6.11: The Symmetry Principle

If a region R is symmetric about a line I, then the centroid of R lies on I.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass
yi

y = 1(x)

|
a b X

Figure 6.65 A region in the plane representing a lamina.
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(6.6) Moments and Centers of Mass

yi
f(x)
[
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! |
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Figure 6.66 A representative rectangle of the lamina.
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(6.6) Moments and Centers of Mass

Next, we need to find the total mass of the rectangle. Let p represent the density of the lamina (note that p is a constant).
In this case, p is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area

of the rectangle by p. Then, the mass of the rectangle is given by pf(x¥ )Ax.

To get the approximate mass of the lamina, we add the masses of all the rectangles to get

mx Y pft )Ax

i=1

This is a Riemann sum. Taking the limit as n — oo gives the exact mass of the lamina:

= lim Z pf(x¥ YAx = p / FOOdx.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its

center of mass is (x;k , ( fxs ))/2). Recall also that treating the rectangle as if it is a point mass located at the center of

mass does not change the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of
the rectangle, pf(x¥ )Ax, multiplied by the distance from the center of mass to the x-axis: ( it ))/2. Therefore, the

moment with respect to the x-axis of the rectangle is p([ Sk )]2/2)Ax. Adding the moments of the rectangles and taking

the limit of the resulting Riemann sum, we see that the moment of the lamina with respect to the x-axis is

L * ]2 b 2
M, = lim Z p—[f(xé J Ax=p / —U(;C)] dx.

n-— oo,

i=1

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle
to the y-axis is x¥ . Then the moment of the lamina with respect to the y-axis is given by

M, = 11m pr* fx* )Ax—p/ xf(x)dx.

We find the coordinates of the center of mass by dividing the moments by the total mass to give
X =My/mand y = M,/m. If we look closely at the expressions for My, My, andm, we notice that the constant p

cancels out when x and 7y are calculated.

Download for free at http://openstax.org/
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(6.6) Moments and Centers of Mass

Theorem 6.12: Center of Mass of a Thin Plate in the xy-Plane

Let R denote a region bounded above by the graph of a continuous function f(x), below by the x-axis, and on the left

and right by the lines x =a and x = b, respectively. Let p denote the density of the associated lamina. Then we

can make the following statements:

i. The mass of the lamina is

b (6.18)
= dx.
m=p| fodx
ii. The moments M, and My of the lamina with respect to the x- and y-axes, respectively, are
b 2 b (6.19)
_ [ &) _
Wil = p/a deandMy = pfa Co)ae
iii. The coordinates of the center of mass (x, y) are
- M _ 6.20
X = Wyand y = % (620}
Download for free at http://openstax.org/ 50
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(6.6) Moments and Centers of Mass

Finding the Center of Mass of a Lamina

Let R be the region bounded above by the graph of the function f(x) = vx and below by the x-axis over the

interval [0, 4]. Find the centroid of the region.

Solution
The region is depicted in the following figure.

Yi
5._

4+

-1 0 1 2 3 4 55X
_1_-

Figure 6.67 Finding the center of mass of a lamina.
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(6.6) Moments and Centers of Mass

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated
lamina, we know the density constant p cancels out of the calculations eventually. Therefore, for the sake of

convenience, let’s assume p = 1.

First, we need to calculate the total mass:
b 4
Ny = 1)dx = VX dx
pf fodx= [

_2 3/2|0_%8_0]=13_6_

Download for free at http://openstax.org/ 55
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(6.6) Moments and Centers of Mass

Next, we compute the moments:
b 2
[f )]
M, = d
o =)

4 124
_ [ x5, _1 _
= Ozdx—4x|0—4

and
b
M, = p/a xf(x)dx

=/04do =/;)4x3/2dx

4
_2.52 _ 2 _ 1= 64
=25, =232-01= &

Thus, we have

- _My _e45_64.3 _12
m~16/3 5 16 5

The centroid of the region is (12/5, 3/4).
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(6.6) Moments and Centers of Mass

yi
f(x)
R
m
a b Xy

Figure 6.68 A region between two functions.

xY

Figure 6.69 A representative rectangle of the region between

two functions.
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(6.6) Moments and Centers of Mass

Theorem 6.13: Center of Mass of a Lamina Bounded by Two Functions

Let R denote a region bounded above by the graph of a continuous function f(x), below by the graph of the
continuous function g(x), and on the left and right by the lines x = a and x = b, respectively. Let p denote the
density of the associated lamina. Then we can make the following statements:

i. The mass of the lamina is

b (6.21)
m=p [ [f(x) - g@)ldx.
a
ii. The moments M, and M, of the lamina with respect to the x- and y-axes, respectively, are
b b (6.22)
1 2 D)
M, = — dM, = — :
o= P -lgPxand M, = p | xife) - gk
iii. The coordinates of the center of mass (x, y ) are
- M _ 6.23
x = Wyand y = % (B:23)
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(6.6) Moments and Centers of Mass

Finding the Centroid of a Region Bounded by Two Functions

Let R be the region bounded above by the graph of the function f(x) =1 — x% and below by the graph of the

function g(x) = x — 1. Find the centroid of the region.
%’ b} gX)=x-1

-4+

Figure 6.70 Finding the centroid of a region between two
curves.
The graphs of the functions intersect at (—2, —3) and (1, 0), so we integrate from —2 to 1. Once again, for the

sake of convenience, assume p = 1.
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(6.6) Moments and Centers of Mass

First, we need to calculate the total mass:
b
m =p[ [f0)- gk
a

1 1
— /_2[1 i o 1)]dx = f _2(2 — x* — x)dx

ol S B s

Download for free at http://openstax.org/

details/books/calculus-volume-1. >/



(6.6) Moments and Centers of Mass

Next, we compute the moments:
b
1 2 2
M, = = —
x =P f SF@F - g )dx

= %/_12((1 - x2)2 - (x— 1)2)07 = %/1_2()64 —3x% + 2x)dx
1

| SR B | R
‘2[5 x”]‘—r 10
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(6.6) Moments and Centers of Mass

and

My = o A1) - gl
—/ l—x)—x—l)]dx—f1 [ — X —x]dx—/ ( x4—x2)dx

1
_ xz_x_s_ﬁ __9
53|27 7w

Therefore, we have

My
m

and y =%— —2—7-%= —%.

= _2.2_ _
4 9 10

1
2

X =

The centroid of the region is (—(1/2), —(3/5)).
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(6.6) Moments and Centers of Mass

The Symmetry Principle

Example 6.33

Finding the Centroid of a Symmetric Region

Let R be the region bounded above by the graph of the function f(x) =4 — x* and below by the x-axis. Find the

centroid of the region.

Solution

The region is depicted in the following figure.
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(6.6) Moments and Centers of Mass

Yi
51

) = 4 — x*

Figure 6.71 We can use the symmetry principle to help find
the centroid of a symmetric region.
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(6.6) Moments and Centers of Mass

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need
only calculate y . Once again, for the sake of convenience, assume p = 1.

First, we calculate the total mass:

b
m =p / . f(x)dx
= 22(4 - xz)dx
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(6.6) Moments and Centers of Mass

Next, we calculate the moments. We only need M, :

2 2 2
_1 2 _1 2 4
-1 _2[4—x] dx—E/_2(16—8x + x*)dx
2
_ 1 x> _ 843 _ 256
‘2[5 3 “6"]—2‘1
Then we have
- _M,_256 3 _8

The centroid of the region is (0, 8/5).
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(6.6) Moments and Centers of Mass

Theorem of Pappus

This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular

kinds of solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the
theorem for volume.)

Theorem 6.14: Theorem of Pappus for Volume

Let R be a region in the plane and let I be a line in the plane that does not intersect R. Then the volume of the solid of

revolution formed by revolving R around [ is equal to the area of R multiplied by the distance d traveled by the centroid
of R.
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(6.6) Moments and Centers of Mass

Proof
We can prove the case when the region is bounded above by the graph of a function f(x) and below by the graph of a

function g(x) over an interval [a, b], and for which the axis of revolution is the y-axis. In this case, the area of the region is

b
A= _/ [f(x) — g(x)ldx. Since the axis of rotation is the y-axis, the distance traveled by the centroid of the region depends
a

only on the x-coordinate of the centroid, x, which is

_ M
X ==

m >’

where

b b
m=p [ [f@ - gwldxand My = p [ Afx) - gColx.
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(6.6) Moments and Centers of Mass

Then,
L f A (x) — g
p f f(®) - gk

and thus

b
d-A=2n fa Af ) — g(0ldx.

However, using the method of cylindrical shells, we have

b
V=2 / ) xf(x) — g(x)dx.

So,

and the proof is complete.
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(6.6) Moments and Centers of Mass

Example 6.34

Using the Theorem of Pappus for Volume

Let R be a circle of radius 2 centered at (4, 0). Use the theorem of Pappus for volume to find the volume of the

torus generated by revolving R around the y-axis.
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(6.6) Moments and Centers of Mass

Solution

The region and torus are depicted in the following figure.
1
6+
44+

(@) (b)
Figure 6.74 Determining the volume of a torus by using the theorem of Pappus. (a) A
circular region R in the plane; (b) the torus generated by revolving R about the y-axis.
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(6.6) Moments and Centers of Mass

The region R is a circle of radius 2, so the area of R is A = 4« units®. By the symmetry principle, the centroid of
R is the center of the circle. The centroid travels around the y-axis in a circular path of radius 4, so the centroid
travels d = 8z units. Then, the volume of the torus is A-d = 3272 units3,

Download for free at http://openstax.org/

details/books/calculus-volume-1. 69



(6.8) Exponential Growth and Decay

Exponential Growth Model

Rule: Exponential Growth Model

Systems that exhibit exponential growth increase according to the mathematical model
kt
y=JXYo€

where y, represents the initial state of the system and k > O is a constant, called the growth constant.
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(6.8) Exponential Growth and Decay
Time (min) Population Size (no. of bacteria)
10 244
Yi
2000 + 20 298
T 30 364
1500 + 40 445
}/ e 20090.02r
_ 50 544
1000 A 60 664
i 70 811
500 i 80 991
] 90 1210
. , . . . oy 100 1478
O 20 40 60 80 100 120t ” —
Figure 6.79 An example of exponential growth for bacteria.
120 2205

Table 6.1 Exponential Growth of a Bacterial Population
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(6.8) Exponential Growth and Decay

Population Growth

Consider the population of bacteria described earlier. This population grows according to the function
f@®) = 200¢%9% where t is measured in minutes. How many bacteria are present in the population after 5

hours (300 minutes)? When does the population reach 100,000 bacteria?

Solution
We have f£(7) = 200e%%%. Then

0.02(300)

f(300) =200e ~ 80,686.

There are 80,686 bacteria in the population after 5 hours.

To find when the population reaches 100,000 bacteria, we solve the equation

100,000 = 200e%0%

500 — e0.0Zt
In500 = 0.02¢
_ In500 .,
r = 002 ~ 310.73.

The population reaches 100,000 bacteria after 310.73 minutes.
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(6.8) Exponential Growth and Decay

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually 1 year). So, if we put $1000 in a

savings account earning 2% simple interest per year, then at the end of the year we have
1000(1 + 0.02) = $1020.

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank
compounds the interest every 6 months, it credits half of the year’s interest to the account after 6 months. During the

second half of the year, the account earns interest not only on the initial $1000, but also on the interest earned during the
first half of the year. Mathematically speaking, at the end of the year, we have

2
1000(1 + %) = $1020.10.
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(6.8) Exponential Growth and Decay

Similarly, if the interest is compounded every 4 months, we have

3
1000(1 + %ﬂ) = $1020.13,

and if the interest is compounded daily (365 times per year), we have $1020.20. If we extend this concept, so that the

interest is compounded continuously, after ¢ years we have

1000, lim (1 + O-nﬁ)m.
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(6.8) Exponential Growth and Decay

Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number e can be
expressed as a limit:

e= lim (1+74)

Based on this, we want the expression inside the parentheses to have the form (1 + 1/m). Let n = 0.02m. Note that as

n— oo, m — oo as well. Then we get

0.02mt 0.02¢

1000, lim (1 + O-nﬂ)m = 1000 lim (1+302)" " = IOOO[mli_r,noo(l + %)m]

We recognize the limit inside the brackets as the number e. So, the balance in our bank account after ¢ years is given by

1000 0%, Generalizing this concept, we see that if a bank account with an initial balance of $P earns interest at a rate

of r%, compounded continuously, then the balance of the account after ¢ years is

Balance = Pe"".
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Compound Interest

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays 5%
annual interest compounded continuously. How much does the student need to invest today to have $1 million

when she retires at age 65? What if she could earn 6% annual interest compounded continuously instead?

Solution
We have

1,000,000 = Pe 0.05(40)

P = 135,335.28.
She must invest $135,335.28 at 5% interest.

If, instead, she is able to earn 6%, then the equation becomes

1,000,000 = pe®0010)

P = 90,717.95.

In this case, she needs to invest only $90,717.95. This is roughly two-thirds the amount she needs to invest at

5%. The fact that the interest is compounded continuously greatly magnifies the effect of the 1% increase in

interest rate.
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(6.8) Exponential Growth and Decay

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the
same amount of time for a population of bacteria to grow from 100 to 200 bacteria as it does to grow from 10,000 to

20,000 bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity
reaches twice its original size. So we have

2y0 — }’0 ekt
- ekt
In2 = kt
— In2
r = T
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(6.8) Exponential Growth and Decay

Definition

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given
by

Doubling time = In2

k
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Using the Doubling Time

Assume a population of fish grows exponentially. A pond is stocked initially with 500 fish. After 6 months,
there are 1000 fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish
population reaches 10,000. When will the owner’s friends be allowed to fish?

Solution

We know it takes the population of fish 6 months to double in size. So, if t represents time in months,
by the doubling-time formula, we have 6 = (In2)/k. Then, k = (In2)/6. Thus, the population is given by

y= SOOe((ln 2)/6)t. To figure out when the population reaches 10,000 fish, we must solve the following
equation:
10,000 = 500¢"" >
20 = e(ln2/6)t
— (In2
m20 = (L2
_ 6(In20)
t = =5 R 25.93.

The owner’s friends have to wait 25.93 months (a little more than 2 years) to fish in the pond.
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Exponential Decay Model

Rule: Exponential Decay Model

Systems that exhibit exponential decay behave according to the model

y=yge ™,

where y( represents the initial state of the system and k > O is a constant, called the decay constant.
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(6.8) Exponential Growth and Decay
y

. } . | . |-
O 20 40 60 80 100 120t
Figure 6.80 An example of exponential decay.
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(6.8) Exponential Growth and Decay

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate
proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words,
if T represents the temperature of the object and 7', represents the ambient temperature in a room, then

T = —k(T — T,).

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function,
and this expression has the additional 7', term. Fortunately, we can make a change of variables that resolves this issue. Let

y(t)=T({)—T,. Then y'(t) =T'(t) —0=T'(t), and our equation becomes
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From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

y=yge X,

and we see that
T-T, = (Tg—Tae™
T = (Ty-Tae ™ +T,

where Ty represents the initial temperature. Let’s apply this formula in the following example.
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Example 6.45

Newton’s Law of Cooling

According to experienced baristas, the optimal temperature to serve coffee is between 155°F and 175°F.

Suppose coffee is poured at a temperature of 200°F, and after 2 minutes in a 70°F room it has cooled to

180°F. When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to
the nearest half minute.
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Solution
We have

Then, the model is

T = (Ty—Tye ™ +T,

180 = (200 —70)e ™ 470
110 = 130e %
% _ 2
ln% = =2k
Inll1-In13 = -2k
¥ = In13—Inll

2

T — 130e(ln 11 —In 13/2)t n
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(6.8) Exponential Growth and Decay

The coffee reaches 175°F when

175 = 13Oe(ln 11 —In 13/2)¢ +70
105 — 13Oe(ln 11 —In 13/2)t
21 _ e(ln 11 —In 13/2)¢
26
21 _ Inll-—In13
In 26 = > t
n21 —1n26 = 1n1151n13t
_ 2(In21 =1In26) _
L= Thil-mi3 ~ 2%
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The coffee can be served about 2.5 minutes after it is poured. The coffee reaches 155°F at

155 = 13Oe(lnll—ln 13/2)t+70
35 = 13Oe(ln 11 —In13)¢
17 _ e(ln 11 —In13)¢
26
_ _ (Inll1—-1In13
In17 —1n26 = ( : )r
_ 2(In17-1n26) _
! nil—ni3 ~ >0

The coffee is too cold to be served about 5 minutes after it is poured.
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Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

y —k
1 _ -kt
5 = e
—In2 = -kt
_ In2
r = r

Note: This is the same expression we came up with for doubling time.
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Definition

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is
given by

Half-life = %
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Example 6.46

Radiocarbon Dating

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits

a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was
originally present in an object and how much carbon remains, we can determine the age of the object. The half-
life of carbon-14 is approximately 5730 years—meaning, after that many years, half the material has converted

from the original carbon-14 to the new nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how

much is left in 50 years? If an artifact that originally contained 100 g of carbon now contains 10 g of carbon,
how old is it? Round the answer to the nearest hundred years.
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Solution

We have
— In2
5730 = 7
— In2
k = 5730
So, the model says
y = 100~ 2/5730)t
In 50 years, we have
y = 1006_(1n 2/5730)(50)
~ 99.40.

Therefore, in 50 years, 99.40 g of carbon-14 remains.
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To determine the age of the artifact, we must solve

10 = 1006—(1n2/5730)t
1 _ ,~(n2/5730)
10

t ~ 19035.

The artifact is about 19,000 years old.

Download for free at http://openstax.org/

details/books/calculus-volume-1. 92



