DP Mathematics (Level 1)

Dr. CHENG, Kam Hang Henry

The Center for the Development of the Gifted and Talented, The Hong Kong University of Science and Technology

Course introduction

September 9, 2023

イロト イポト イヨト イヨト

Course duration: **16.5 three-hour classes**; 18 weeks in total (including a 1.5-hour mid-term assessment and a 3-hour final assessment).

イロト イボト イヨト イヨト

Course duration: **16.5 three-hour classes**; 18 weeks in total (including a 1.5-hour mid-term assessment and a 3-hour final assessment).

The main topics that we will study are:

• Functions

イロト イポト イヨト イヨト

Course duration: **16.5 three-hour classes**; 18 weeks in total (including a 1.5-hour mid-term assessment and a 3-hour final assessment).

The main topics that we will study are:

- Functions
- Limits and continuity of functions

Course duration: **16.5 three-hour classes**; 18 weeks in total (including a 1.5-hour mid-term assessment and a 3-hour final assessment).

The main topics that we will study are:

- Functions
- Limits and continuity of functions
- Derivatives of functions and their applications

Course duration: **16.5 three-hour classes**; 18 weeks in total (including a 1.5-hour mid-term assessment and a 3-hour final assessment).

The main topics that we will study are:

- Functions
- Limits and continuity of functions
- Derivatives of functions and their applications
- Integral calculus and its applications

・ロト・日本・ヨト・ヨー うへで

Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

イロト イボト イヨト

э.

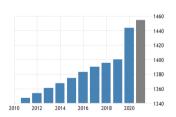
Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

• Speed and distance traveled by a moving particle

イロト イボト イヨト イヨ

Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

- Speed and distance traveled by a moving particle
- Cell phone network charge as a function of usage


Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

- Speed and distance traveled by a moving particle
- Cell phone network charge as a function of usage
- Global average air temperature as a function of amount of CO₂ release

イロト イボト イヨト イヨ

Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

- Speed and distance traveled by a moving particle
- Cell phone network charge as a function of usage
- Global average air temperature as a function of amount of CO₂ release

・ロット (四) ・ (田) ・ (田)

• Population of a country as a function of time

Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

- Speed and distance traveled by a moving particle
- Cell phone network charge as a function of usage
- Global average air temperature as a function of amount of CO₂ release

(I) < (I)

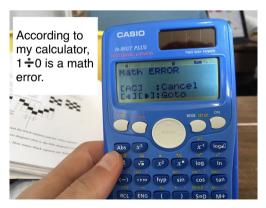
- Population of a country as a function of time
- Stock price as a function of time

Many real-world phenomena can be explained by recognizing the **relationship** between different physical quantities. A **function** is a mathematical description of such relationships.

- Speed and distance traveled by a moving particle
- Cell phone network charge as a function of usage
- Global average air temperature as a function of amount of CO₂ release

・ロット (四) ・ (田) ・ (田)

- Population of a country as a function of time
- Stock price as a function of time


We will study behaviors of different functions in various aspects.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

When you key in " $1\div 0$ " into a calculator, it runs into an ${\rm error}$ and cannot display any answer.

イロト イボト イヨト イヨト

When you key in " $1\div 0$ " into a calculator, it runs into an ${\rm error}$ and cannot display any answer.

・ロト ・四ト ・ヨト

э.

When you key in $``1 \div 0"$ into a calculator, it runs into an ${\rm error}$ and cannot display any answer.

• What happens if you key in " $1 \div 0.01$ ", " $1 \div 0.00001$ ", and $1 \div$ a positive number that is closer and closer to 0?

When you key in " $1\div 0$ " into a calculator, it runs into an ${\rm error}$ and cannot display any answer.

- What happens if you key in " $1 \div 0.01$ ", " $1 \div 0.00001$ ", and $1 \div$ a positive number that is closer and closer to 0?
- What if you key in " $1 \div -0.01$ ", " $1 \div -0.00001$ ", and $1 \div$ a negative number that is closer and closer to 0?

When you key in " $1\div 0$ " into a calculator, it runs into an ${\rm error}$ and cannot display any answer.

- What happens if you key in " $1 \div 0.01$ ", " $1 \div 0.00001$ ", and $1 \div$ a positive number that is closer and closer to 0?
- What if you key in "1 \div -0.01 ", "1 \div -0.00001 ", and 1 \div a negative number that is closer and closer to 0?

What is actually happening here?

<ロト < 同ト < ヨト < ヨト

ヘロト 人間 とくほとくほとう

We can solve the following problems after we know how to compute and how to apply **derivatives** of functions:

• Suppose that you are facing and looking at a moving car. **How fast** is your head turning relative to the speed of the car?

(I) < (I)

We can solve the following problems after we know how to compute and how to apply **derivatives** of functions:

- Suppose that you are facing and looking at a moving car. **How fast** is your head turning relative to the speed of the car?
- Suppose that you are the owner of a restaurant. How much of a particular food item should you order so as to **maximize the profit** of your business?

We can solve the following problems after we know how to compute and how to apply **derivatives** of functions:

- Suppose that you are facing and looking at a moving car. **How fast** is your head turning relative to the speed of the car?
- Suppose that you are the owner of a restaurant. How much of a particular food item should you order so as to **maximize the profit** of your business?
- Without using a calculator, how do you find a solution to a **complicated** equation such as

$$x = \cos x?$$

ヘロト 人間 とくほとくほとう

We can solve the following problems after we learn integral calculus:

• If we know the derivative of a function, how can we recover the original function?

We can solve the following problems after we learn integral calculus:

- If we know the derivative of a function, how can we recover the original function?
- How fast and in what angle should we throw a stone so as to hit a target somewhere in front of us?

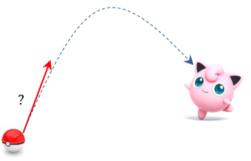
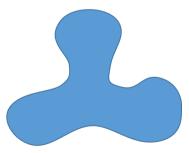



Image: A marked and A marked

We can solve the following problems after we learn integral calculus:

- If we know the derivative of a function, how can we recover the original function?
- How fast and in what angle should we throw a stone so as to hit a target somewhere in front of us?
- How do we measure the area of regions of arbitrary shapes?

We can solve the following problems after we learn integral calculus:

- If we know the derivative of a function, how can we recover the original function?
- How fast and in what angle should we throw a stone so as to hit a target somewhere in front of us?
- How do we measure the area of regions of arbitrary shapes?
- Why is the area of a circular disk of radius r given by

$$A = \pi r^2$$

Why is the **volume** of a spherical ball of radius r given by

$$V = \frac{4\pi}{3}r^3?$$

How do we compute the **volume**, **surface area**, **length**, etc. of other geometric shapes?

Mathematics (Level 1) and Physics (Pre-stage) both cover similar topics on the subject of calculus.

イロト イボト イヨト イヨト

Mathematics (Level 1) and Physics (Pre-stage) both cover similar topics on the subject of calculus.

The following are some characteristics of Mathematics (Level 1) which may distinguish it from Physics (Pre-stage):

• We focus more on **conceptual understanding** of the mathematical **theory**.

Mathematics (Level 1) and Physics (Pre-stage) both cover similar topics on the subject of calculus.

The following are some characteristics of Mathematics (Level 1) which may distinguish it from Physics (Pre-stage):

- We focus more on **conceptual understanding** of the mathematical **theory**.
- Our **numerical computations are easy** a calculator will not be too helpful usually.

・ロン ・四 と ・ ヨ と

Mathematics (Level 1) and Physics (Pre-stage) both cover similar topics on the subject of calculus.

The following are some characteristics of Mathematics (Level 1) which may distinguish it from Physics (Pre-stage):

- We focus more on **conceptual understanding** of the mathematical **theory**.
- Our **numerical computations are easy** a calculator will not be too helpful usually.
- Some proof-based problems will be included.

Screening test

There will be a **screening test** arranged for students who would like to apply for Mathematics (Level 1 or Pre-stage).

・ロト ・部ト ・ヨト ・ヨト

э.

Screening test

There will be a **screening test** arranged for students who would like to apply for Mathematics (Level 1 or Pre-stage).

- Date: Saturday, October 7
- Time: **11:00 12:00**
- Mode: Online proctored via Zoom
- Format: Closed-book test; multiple choice problems + short response problems

Screening test

There will be a **screening test** arranged for students who would like to apply for Mathematics (Level 1 or Pre-stage).

- Date: Saturday, October 7
- Time: **11:00 12:00**
- Mode: Online proctored via Zoom
- Format: Closed-book test; multiple choice problems + short response problems

The main purpose of this test to better allocate students to a Mathematics course (Level 1 vs. Pre-stage) (English vs. Cantonese) that is **more suitable** for them.

- You do not need to study or prepare particularly for this test.
- Usage of calculators will not be allowed (and will not be necessary).

ヘロト ヘヨト ヘヨト