Chapter 3 Derivatives

1. Differentiability and derivatives

Remark 3.1 Let f be a function defined on an interval and let $a \neq b$ be distinct real numbers in that interval. Let's consider the quantity

$$
\frac{f(b)-f(a)}{b-a}
$$

○ In geometry, $\frac{f(b)-f(a)}{b-a}$ is the slope of the "secant line" joining the two points $(a, f(a))$ and $(b, f(b))$ on the graph of f.
\odot In physics, if $a<b$, then $\frac{f(b)-f(a)}{b-a}$ is the average rate of change of f from a to b.
© In kinematics, if $f(t)$ represents the position of a moving particle after t seconds from an initial time and if $a<b$, then $\frac{f(b)-f(a)}{b-a}$ is the average velocity of the particle from the $a^{\text {th }}$ second to the $b^{\text {th }}$ second.

We aim to study the limit of the above quantity when a and b becomes so close to each other that the line joining the points $(a, f(a))$ and $(b, f(b))$ on the graph of f (a secant line) becomes a line which touches the graph of f at the point $(a, f(a))$ (a tangent line).

In general, such a limit may or may not exist. So we make the following definition.

Definition 3.2 Let a be a real number and f be a function. f is said to be differentiable at a if the limit

$$
\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a}
$$

or equivalently the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(obtained with a change of variable $h=b-a$), exists as a finite real number. f is said to be differentiable on an interval if it is differentiable at every number in that interval.

Definition 3.3 Let f be a function.
© Let a be a real number. If f is differentiable at a, then the derivative of \boldsymbol{f} at \boldsymbol{a} is defined by the limit

$$
f^{\prime}(a):=\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

© Replacing the real number a by a real variable x, we say that the derivative of \boldsymbol{f} is the function f^{\prime} defined by

$$
f^{\prime}(x):=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

for every x in the domain of f at which f is differentiable. The domain of this function f^{\prime} is therefore a subset of the domain of f.

- The process of finding the derivative of a function is called differentiation. So to differentiate the function f means to find its derivative f^{\prime}, i.e. to evaluate the above limit for each x in the domain of f.

Remark 3.4 Let a be a real number and let f be a function which is differentiable at a. Then the graph of f is smooth near a.
© In geometry, $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point $(a, f(a))$.
\odot In physics, $f^{\prime}(a)$ is the "instantaneous" rate of change of f at a.
\bigcirc In kinematics, if $f(t)$ represents the position of a moving particle after t seconds from an initial time, then $f^{\prime}(a)$ is the "instantaneous" velocity of the particle at the $a^{\text {th }}$ second.

Example 3.5 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)=x^{2}
$$

Find the derivative of f from definition.

Solution:

For every real number x, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x .
\end{aligned}
$$

Therefore f is differentiable everywhere on \mathbb{R}, and its derivative $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
f^{\prime}(x)=2 x
$$

