Symmetry properties

Definition 1.34

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called
(i) an odd function if $f(-x)=-f(x)$ for every $x \in \mathbb{R}$;
(ii) an even function if $f(-x)=f(x)$ for every $x \in \mathbb{R}$;
(iii) a periodic function if there exists $c>0$ such that $f(x+c)=f(x)$ for every $x \in \mathbb{R}$. c is called a period of f. If there is a smallest such positive number c, then it is called the fundamental period of f.

$f: \mathbb{R} \rightarrow \mathbb{R}$ is even

Informal definition of limit

Definition 2.1 (Finite limit at a number)

Let a be a real number and f be a function which is well-defined on an open interval that contains a, except possibly at a. A real number L is called a "limit of $f(x)$ as x tends to a " if the number $f(x)$ gets closer and closer to L when x gets closer and closer to a but $x \neq a$. In symbols we write either

$$
f(x) \rightarrow L \text { as } x \rightarrow a \quad \text { or } \quad \lim _{x \rightarrow a} f(x)=L .
$$

